Math, asked by Ikee, 3 months ago

evaluate lim(cos x )^cot^2x​

Attachments:

Answers

Answered by amansharma264
7

EXPLANATION.

\sf \implies  \lim_{x \to 0}  (cosx)^{cot^{2} x}

As we know that,

First we put the value of x = 0 in equation and check their form, we get.

\sf \implies  \lim_{x \to 0} (cos(0))^{cot^{2}(0) }

\sf \implies  \lim_{x \to 0} 1^{\infty}

We can see that it is a form of 1^∞,

So, we can take log on both sides, we get.

\sf \implies x =  \lim_{x \to 0} (cosx)^{cot^{2} x}

\sf \implies log(x) =  \lim_{x \to 0} log \bigg(cosx\bigg)^{cot^{2} x}

\sf \implies log(x) =  \lim_{x \to 0} (cot^{2}x )log (cosx)

\sf \implies log(x) =  \lim_{x \to 0} \dfrac{log(cosx)}{tan^{2} x}

Again, put the value of x = 0 in equation and check their form, we get.

\sf \implies log(x) =  \lim_{x \to 0} \dfrac{log(cos(0))}{tan^{2}(0) }

As we can see that it is the form of 0/0 form,

Now we can apply L-Hopital rule, we get.

\sf \implies log(x) =  \lim_{x \to 0} log \bigg[\dfrac{1 \times (-sin x)}{cos x} \times \dfrac{1}{(tan x)^{2} }\bigg]

Differentiate (tan x)².

⇒ d(tan x)²/dx = 2.tan x. sec²x.

\sf \implies log(x) = log \bigg[\dfrac{-sin x}{cos x}  \times \dfrac{1}{2.tanx.sec^{2}x }\bigg]

Put the value of x = 0 in equation, we get.

\sf \implies log(x) = log \bigg[\dfrac{-sin(0)}{cos(0)} \times \dfrac{1}{2.tan(0).sec^{2}(0) } \bigg]

\sf \implies log(x) = log(0)

\sf \implies log(x) = 1.

                                                                                       

MORE INFORMATION.

Some limits which do not exists.

\sf \implies (1) =  \lim_{x \to 0} \bigg(\dfrac{1}{x} \bigg)

\sf \implies (2) =  \lim_{x \to 0} \bigg((x)^{\dfrac{1}{x} } \bigg)

\sf \implies (3) =  \lim_{x \to 0} \dfrac{| x |}{x}

\sf \implies (4) =  \lim_{x \to a} \dfrac{| x - a| }{x - a}

\sf \implies (5) =  \lim_{x \to 0} Sin \bigg(\dfrac{1}{x} \bigg)

\sf \implies (6) =  \lim_{x \to 0} Cos \bigg(\dfrac{1}{x} \bigg)

\sf \implies (7) =  \lim_{x \to 0} \bigg( (e)^{\dfrac{1}{x} } \bigg)

\sf \implies (8) =  \lim_{x \to \infty} Sin(x)

\sf \implies (9) =  \lim_{n \to \infty} Cos(x)

Answered by gurmanpreet1023
25

Answer:

PLEASE SEE THE ABOVE ATTACHMENT

Attachments:
Similar questions