Math, asked by yshreyansh8, 4 months ago

Evaluate Lim sin nx
X>0​

Attachments:

Answers

Answered by amansharma264
10

EXPLANATION.

\sf \implies  \lim_{x \to 0} \dfrac{sin(nx)}{x}

As we know that,

It is a type of trigonometric limits.

one of the most fundamental formula in trigonometric limits is,

\sf \implies  \lim_{x \to 0} \dfrac{sin(x)}{x} = 1

Multiply and divide numerator and denominator by n, we get.

\sf \implies  \lim_{x \to 0} \dfrac{sin(nx)}{x} \ \times \dfrac{n}{n}

\sf \implies  \lim_{x \to 0} n.\dfrac{sin(nx)}{nx}

\sf \implies  n \lim_{x \to 0} \dfrac{sin(nx)}{nx}

\sf \implies n \lim_{x \to 0} (1)

\sf \implies  \lim_{x \to 0} = n

                                                                                                                   

MORE INFORMATION.

\sf \implies (A) =  \lim_{x \to 0} \dfrac{sin(x)}{x}  \sf \implies  \lim_{x \to 0} \dfrac{x}{sin(x)} = 1  \ \ Or \sf \implies  \lim_{x \to 0} sin(x) = 0

\sf \implies  (B) = \lim_{x \to 0} cos(x)  \sf \implies  \lim_{x \to 0}  \bigg(\dfrac{1}{cos(x)} \bigg)=1

\sf \implies (3) =  \lim_{x \to 0} \dfrac{tan(x)}{x} = \sf \implies  \lim_{x \to 0} \dfrac{x}{tan(x)} = 1 \ \ Or \sf \implies  \lim_{x \to 0} tan(x) = 0

Answered by mathdude500
4

Given Question :-

 \tt \: Evaluate \: \tt \:\lim_{x\to 0} \: \dfrac{sin \: nx}{x}

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\large\underline\purple{\bold{Solution :-  }}

  :  \longrightarrow \tt \: \tt \:\lim_{x\to 0} \: \dfrac{sin \: nx}{x}

☆ If we substitute directly x = 0, we get indeterminant form

☆ To evaluate, multiply and divide by n, we get

  :  \longrightarrow \tt \: \tt \:\lim_{x\to 0} \: \dfrac{sin \: nx}{n \: x}  \times n

  :  \longrightarrow \tt \: \tt \:n \: \lim_{x\to 0} \: \dfrac{sin \: nx}{nx}

\tt\implies \:n \:  \times  \: 1

\tt\implies \:n

 \boxed{ \pink{ \bf \: Hence \:   \lim_{x\to 0} \: \dfrac{sin \: nx}{x}  = n}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\bf \:  ⟼ Explore  \: more } ✍

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{tan \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {e}^{x}  - 1}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ log(1 + x)}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {a}^{x}  - 1}{x} \:  =  \:  log(a)  }}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{1 - cos \: x}{x} \:  =  \: 0 }}}}}} \\ \end{gathered}

\begin{gathered}(6)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to a} \: \dfrac{ {x}^{n} -  {a}^{n}  }{x - a} \:  =  \: n {a}^{n - 1}  }}}}}} \\ \end{gathered}

Similar questions