Physics, asked by tarakhadka00023, 8 months ago

evaluate lim x. 0 e^5x-1/x​

Answers

Answered by Anonymous
31

Question :

Evaluate:

\sf\lim_{x\to0}\dfrac{e^{5x}-1}{x}

Solution :

\tt\lim_{x\to0}\dfrac{e^{5x}-1}{x}

Since 0/0 is of indeterminate form.

Then ,apply L'Hospital's Rule.

\implies\sf\lim_{x\to0}\dfrac{e^{5x}-1}{x}=\sf\lim_{x\to0}\dfrac{\dfrac{d(e^{5x})}{dx}-\dfrac{d(1)}{dx}}{\dfrac{dx}{dx}}

\sf=\lim_{x\to0}\dfrac{\dfrac{e^{5x}}{d(5x)}\times\dfrac{d(5x)}{dx}-0}{\dfrac{dx}{dx}}

\sf=\lim_{x\to0}\dfrac{e^{5x}\times5-0}{1}

\sf=\lim_{x\to0}\:e^{5x}\times5

\sf=e^{0}\times5

\sf=1\times5

\sf=5

Therefore ,

\rm\lim_{x\to0}\dfrac{e^{5x}-1}{x}=5

_____________________

About L'HOSPITAL'S Rule :

If f(a)=g(a)= 0 , then

\sf\lim_{x\to\:a}\dfrac{f(x)}{g(x)}=\sf\lim_{x\to\:a}\dfrac{f'(x)}{g'(x)}

Similar questions