Math, asked by nagathanabhi, 5 months ago

evaluate lim x→0 sin^2 4x / x^2

Answers

Answered by mantu9000
4

We have:

\lim_{x \to 0} \dfrac{\sin^2 4x}{x^{2} }

We have to evaluate \lim_{x \to 0} \dfrac{\sin^2 4x}{x^{2} }.

Solution:

\lim_{x \to 0} \dfrac{\sin^2 4x}{x^{2} }

Multiplying numerator and denominator by 4, we get

= \lim_{x \to 0} 4\dfrac{\sin^2 4x}{4x^{2} }

= \lim_{x \to 0} 4(\dfrac{\sin 2x}{2x })^2

= 4\lim_{x \to 0} (\dfrac{\sin 2x}{2x })^2

Using the limit identity:

\lim_{x \to 0} \dfrac{\sin x}{x}=1

= 4\lim_{x \to 0} (\dfrac{\sin 2x}{2x })^2

= 4. (1)^2

= 4 × 1

= 4

\lim_{x \to 0} \dfrac{\sin^2 4x}{x^{2} } = 4

Thus, the value of \lim_{x \to 0} \dfrac{\sin^2 4x}{x^{2} } = 4.

Answered by pulakmath007
3

SOLUTION

TO EVALUATE

\displaystyle \sf{ \lim_{x \to 0} \:  \frac{ { \sin}^{2}4x }{ {x}^{2} }}

EVALUATION

SOLVE USING L HOSPITAL RULE

\displaystyle \sf{ \lim_{x \to 0} \:  \frac{ { \sin}^{2}4x }{ {x}^{2} }} \:  \:   \:  \:  \:  \:  \:  \:  \:  \bigg(  \frac{0}{0} \bigg) \: form

\displaystyle \sf{ =  \lim_{x \to 0} \:  \frac{ 2 \times 4 \times \sin4x  \cos 4x}{ 2x }} \:  \:   \:  \:  \:  \:  \:  \:

\displaystyle \sf{ =  \lim_{x \to 0} \:  \frac{ 2  \sin 8x }{x }} \:  \:   \:  \:  \:  \:  \:  \:  \:  \bigg(  \frac{0}{0} \bigg) \: form

\displaystyle \sf{ =  \lim_{x \to 0} \:  \frac{ 2  \times 8 \times  \cos 8x }{1}} \:  \:   \:  \:  \:  \:  \:  \:  \:

\displaystyle \sf{ = 16 \cos 0}

 = 16 \times 1

 = 16

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

2. the value of limited x to 0 sin7x+sin5x÷tan5x-tan2x is

https://brainly.in/question/28582236

Similar questions