Math, asked by 21teilang, 5 months ago

evaluate lim x→0 x^2+2cosx-2/xsin^3x​

Answers

Answered by Anonymous
202

\LARGE\bf{\underline{\underline{\pink{\bigstar Answer}}}}

\large\rm{  \lim\limits_{x \to 0} \Bigg ( \dfrac{ x^2 + 2 \ \cos \ x -2}{ x \ \sin^{3} x} \Bigg )}

\large\rm

\large\rm{ = \lim\limits_{x \to 0} \Bigg ( \dfrac{ x^2 + 2 \ \cos \ x -2}{ x^{4}} \times \dfrac{x^{3} }{ \sin^{3} \ x}  \Bigg )}

\large\rm

\large\rm{ = \lim\limits_{x \to 0} \Bigg ( \dfrac{ x^2 + 2 \ \cos \ x -2}{ x^{4}} \Bigg )}

\large\rm

\large\rm{ = \lim\limits_{ x \to 0} \Bigg ( \dfrac{2x - 2 \sin \ x}{4x^{3}} \Bigg ) }

\large\rm

\large\rm{ = \lim\limits_{ x \to 0} \Bigg ( \dfrac{2x - 2 \cos \ x}{12x^{3}} \Bigg ) }

\large\rm

\large\rm{ = \lim\limits_{x \to 0} \Bigg ( \dfrac{2 \sin \ x}{24 x^3} \Bigg ) }

\large\rm

\large\rm{ = \dfrac{1}{2}}

Answered by prabhat311
0

Answer:

lim(x sin3xx2+2 cos x−2)

\large\rm

\large\rm{ = \lim\limits_{x \to 0} \Bigg ( \dfrac{ x^2 + 2 \ \cos \ x -2}{ x^{4}} \times \dfrac{x^{3} }{ \sin^{3} \ x} \Bigg )}=x→0lim(x4x2+2 cos x−2×sin3 xx3)

\large\rm

\large\rm{ = \lim\limits_{x \to 0} \Bigg ( \dfrac{ x^2 + 2 \ \cos \ x -2}{ x^{4}} \Bigg )}=x→0lim(x4x2+2 cos x−2)

\large\rm

\large\rm{ = \lim\limits_{ x \to 0} \Bigg ( \dfrac{2x - 2 \sin \ x}{4x^{3}} \Bigg ) }=x→0lim(4x32x−2sin x)

\large\rm

\large\rm{ = \lim\limits_{ x \to 0} \Bigg ( \dfrac{2x - 2 \cos \ x}{12x^{3}} \Bigg ) }=x→0lim(12x32x−2cos x)

\large\rm

\large\rm{ = \lim\limits_{x \to 0} \Bigg ( \dfrac{2 \sin \ x}{24 x^3} \Bigg ) }=x→0lim(24x32sin x)

\large\rm

\large\rm{ = \dfrac{1}{2}}=21

Similar questions