evaluate lim x→0 x^2+2cosx-2/xsin^3x
Answers
Answered by
202
Answered by
0
Answer:
lim(x sin3xx2+2 cos x−2)
\large\rm
\large\rm{ = \lim\limits_{x \to 0} \Bigg ( \dfrac{ x^2 + 2 \ \cos \ x -2}{ x^{4}} \times \dfrac{x^{3} }{ \sin^{3} \ x} \Bigg )}=x→0lim(x4x2+2 cos x−2×sin3 xx3)
\large\rm
\large\rm{ = \lim\limits_{x \to 0} \Bigg ( \dfrac{ x^2 + 2 \ \cos \ x -2}{ x^{4}} \Bigg )}=x→0lim(x4x2+2 cos x−2)
\large\rm
\large\rm{ = \lim\limits_{ x \to 0} \Bigg ( \dfrac{2x - 2 \sin \ x}{4x^{3}} \Bigg ) }=x→0lim(4x32x−2sin x)
\large\rm
\large\rm{ = \lim\limits_{ x \to 0} \Bigg ( \dfrac{2x - 2 \cos \ x}{12x^{3}} \Bigg ) }=x→0lim(12x32x−2cos x)
\large\rm
\large\rm{ = \lim\limits_{x \to 0} \Bigg ( \dfrac{2 \sin \ x}{24 x^3} \Bigg ) }=x→0lim(24x32sin x)
\large\rm
\large\rm{ = \dfrac{1}{2}}=21
Similar questions
History,
2 months ago
India Languages,
2 months ago
Math,
2 months ago
Social Sciences,
5 months ago
Hindi,
11 months ago
Science,
11 months ago