Math, asked by Anonymous, 4 months ago

evaluate: lim x→π/4 sin2x
answer correct​

Attachments:

Answers

Answered by TMarvel
75

Answer:

1

Step-by-step explanation:

 \sin(2x)  \\  = 2 \sin(x)  \cos(x)  \\  putting \: x =  \frac{\pi}{4}  \\  = 2 \sin( \frac{\pi}{4} )  \cos( \frac{\pi}{4} )  \\  = 2 \times  \frac{1}{ \sqrt{2} }  \times  \frac{1}{ \sqrt{2} }  \\  =  \frac{2}{2}  \\  = 1

HOPE IT HELPS :D

Answered by pulakmath007
11

\displaystyle \sf{  } \:   \lim_{x \to  \frac{\pi}{4} }   \: \sin 2x = 1

Given :

\displaystyle \sf{  } \:   \lim_{x \to  \frac{\pi}{4} }   \: \sin 2x

To find :

The value of limit

Solution :

Step 1 of 2 :

Write down the given limit

Here the given limit is

\displaystyle \sf{  } \:   \lim_{x \to  \frac{\pi}{4} }   \: \sin 2x

Step 2 of 2 :

Find the value

\displaystyle \sf{  } \:   \lim_{x \to  \frac{\pi}{4} }   \: \sin 2x

\displaystyle \sf{  } \:   =  \sin \frac{2\pi}{4}

\displaystyle \sf{  } \:   =  \sin \frac{\pi}{2}

\displaystyle \sf{  } \:    = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions