Math, asked by bikasdutta2013, 1 month ago

Evaluate:
lim x-->1 [2sin(x-1)/(x-1)]
where [.] represents greatest integer function.
please someone solve it
Answer is 1 how?​

Answers

Answered by amitnrw
6

Given :  \lim_{x \to 1} \left[ \dfrac{2\sin{(x-1)}}{x-1} \right]

[.] represents greatest integer function.

To Find :  Value

Solution:

\lim_{x \to 1} \left[ \dfrac{2\sin{(x-1)}}{x-1} \right]

on substituting x = 1

sin(x - 1) = sin(1 - 1) = 0

x - 1 = 1 - 1= 0

Hence its 0/0 form

so applying L' hospital rule

differentiating numerator and denominator separately

\lim_{x \to 1} \left[ \dfrac{2\cos{(x-1)}}{1} \right]

now cos (0) = 1  but cos (0+)  and cos(0-)  are +ve and  slightly less than 1

cos ( -α) = cos(α)

Hence cos(x- 1)  ≈ 1   < 1   as x → 1

at x = 1  Value will 2

at  x → 1 value will  1    as  [ slightly less than 2 ]  =  1

Learn More:

2.3(x−1.2)=−9.66 Enter your answer, as a decimal, in the box. x

brainly.in/question/11264248

If, x = [root(p+q) +root(pq)]

brainly.in/question/381466

Answered by pulakmath007
6

SOLUTION

TO PROVE

\displaystyle  \sf{\lim_{x \to 1} \:  \bigg[ \:  \frac{2 \sin (x - 1)}{(x-1)}  \: \bigg]}

Where [ ] represents greatest integer function

EVALUATION

Here the given limit is

\displaystyle  \sf{\lim_{x \to 1} \:  \bigg[ \:  \frac{2 \sin (x - 1)}{(x-1)}  \: \bigg]}

First we explain about greatest integer function

[ x ] represents the greatest integer but not greater than x

For example

[ 2 ] = 2 , [ 1.99 ] = 1 , [ - 2 ] = - 2 , [ - 1.99 ] = - 2

Now we concentrate on the given limit

\displaystyle  \sf{\lim_{x \to 1} \:  \bigg[ \:  \frac{2 \sin (x - 1)}{(x-1)}  \: \bigg]}

Let h = x - 1

Then h → 0 as x → 1

Then above limit becomes

\displaystyle  \sf{\lim_{x \to 1} \:  \bigg[ \:  \frac{2 \sin (x - 1)}{(x-1)}  \: \bigg]}

\displaystyle  \sf{ = \lim_{h \to 0} \:  \bigg[ \:  \frac{2 \sin h}{h}  \: \bigg]}

\displaystyle  \sf{Now \:  for \:   \: 0 &lt; h &lt;  \frac{\pi}{2} \: we \: have}

\displaystyle  \sf{0 &lt;  \sin h &lt; h }

\displaystyle  \sf{ \implies \: 0 &lt;   \frac{\sin h}{h}  &lt; 1 }

\displaystyle  \sf{ \implies \: 0 &lt;   \frac{2\sin h}{h}  &lt; 2 }

Thus we get

Right hand limit

\displaystyle  \sf{ = \lim_{x \to 1 + } \:  \bigg[ \:  \frac{2 \sin (x - 1)}{(x-1)}  \: \bigg]}

\displaystyle  \sf{ = \lim_{h \to 0 + } \:  \bigg[ \:  \frac{2 \sin h}{h}  \: \bigg]}

\displaystyle  \sf{ = 1}

Similarly it can be shown that

Left hand limit

\displaystyle  \sf{ = \lim_{x \to 1  -  } \:  \bigg[ \:  \frac{2 \sin (x - 1)}{(x-1)}  \: \bigg]}

 = 1

∴ Right hand limit = Left hand limit

\displaystyle  \sf{ \therefore \:  \: \lim_{x \to 1  } \:  \bigg[ \:  \frac{2 \sin (x - 1)}{(x-1)}  \: \bigg] = 1}

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions