Evaluate \lim_ {x rightarrow \infty } \Left [\frac{x-1} {x-2} \right]^ x.
Answers
Given expression is
can be rewritten as
We know that
So, using this we get
Hence,
Additional Information :-
Answer:
Given expression is
\rm :\longmapsto\:\displaystyle\lim_{x \to \infty } \: {\bigg[\dfrac{x - 1}{x - 2} \bigg]}^{x}:⟼
x→∞
lim
[
x−2
x−1
]
x
can be rewritten as
\rm \: = \:\:\displaystyle\lim_{x \to \infty } \: {\bigg[1 + \dfrac{x - 1}{x - 2} - 1 \bigg]}^{x}=
x→∞
lim
[1+
x−2
x−1
−1]
x
\rm \: = \:\:\displaystyle\lim_{x \to \infty } \: {\bigg[1 + \dfrac{x - 1 - (x - 2)}{x - 2}\bigg]}^{x}=
x→∞
lim
[1+
x−2
x−1−(x−2)
]
x
\rm \: = \:\:\displaystyle\lim_{x \to \infty } \: {\bigg[1 + \dfrac{x - 1 - x + 2}{x - 2}\bigg]}^{x}=
x→∞
lim
[1+
x−2
x−1−x+2
]
x
\rm \: = \:\:\displaystyle\lim_{x \to \infty } \: {\bigg[1 + \dfrac{1}{x - 2}\bigg]}^{x}=
x→∞
lim
[1+
x−2
1
]
x
\rm \: = \:\:\displaystyle\lim_{x \to \infty } \: {\bigg[1 + \dfrac{1}{x - 2}\bigg]}^{(x - 2) \times \dfrac{1}{x - 2} \times x}=
x→∞
lim
[1+
x−2
1
]
(x−2)×
x−2
1
×x
We know that
\boxed{ \bf{ \: \displaystyle\lim_{x \to \infty } {\bigg[1 + \dfrac{1}{x} \bigg]}^{x} = e}}
x→∞
lim
[1+
x
1
]
x
=e
So, using this we get
\rm \: = \: {e}^{\displaystyle\lim_{x \to \infty } \: \bigg[\dfrac{x}{x - 2} \bigg]}=e
x→∞
lim
[
x−2
x
]
\rm \: = \: {e}^{\displaystyle\lim_{x \to \infty } \: \bigg[\dfrac{x}{x(1 - \frac{2}{x} )} \bigg]}=e
x→∞
lim
[
x(1−
x
2
)
x
]
\rm \: = \: {e}^{\displaystyle\lim_{x \to \infty } \: \bigg[\dfrac{1}{(1 - \frac{2}{x} )} \bigg]}=e
x→∞
lim
[
(1−
x
2
)
1
]
\rm \: = \: {e}^{1}=e
1
\rm \: = \:e=e
Hence,
\rm :\longmapsto\: \boxed{ \bf{ \: \displaystyle\lim_{x \to \infty } \: {\bigg[\dfrac{x - 1}{x - 2} \bigg]}^{x} = e}}:⟼
x→∞
lim
[
x−2
x−1
]
x
=e
Additional Information :-
\boxed{ \bf{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1}}
x→0
lim
x
sinx
=1
\boxed{ \bf{ \: \displaystyle\lim_{x \to 0} \frac{tanx}{x} = 1}}
x→0
lim
x
tanx
=1
\boxed{ \bf{ \: \displaystyle\lim_{x \to 0} \frac{tan {}^{ - 1} x}{x} = 1}}
x→0
lim
x
tan
−1
x
=1
\boxed{ \bf{ \: \displaystyle\lim_{x \to 0} \frac{ {sin}^{ - 1} x}{x} = 1}}
x→0
lim
x
sin
−1
x
=1
\boxed{ \bf{ \: \displaystyle\lim_{x \to 0} \frac{ log(1 + x) }{x} = 1}}
x→0
lim
x
log(1+x)
=1
\boxed{ \bf{ \: \displaystyle\lim_{x \to 0} \frac{{e}^{x} - 1}{x} = 1}}
x→0
lim
x
e
x
−1
=1
\boxed{ \bf{ \: \displaystyle\lim_{x \to 0} \frac{{a}^{x} - 1}{x} = loga}}
x→0
lim
x
a
x
−1
=loga