Math, asked by EmeraldBoy, 12 hours ago

evaluate lim x tend to 1 [(x-2/x^2-x) - 1/x^3-3x^2+2x]

Answers

Answered by AestheticSky
13

\\\quad\longrightarrow\quad \displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{x-2}{x^{2} -x}-\dfrac{1}{x^{3} -3x^{2} +2x} \bigg] \\

The function can also be written as:

\\\quad\longrightarrow\quad \displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{x-2}{x(x-1)}-\dfrac{1}{x(x^{2} -3x+2)} \bigg] \\

\\\quad\longrightarrow\quad \displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{x-2}{x(x-1)}-\dfrac{1}{x(x^{2} -2x-x+2)} \bigg] \\

\\\quad\longrightarrow\quad \displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{x-2}{x(x-1)}-\dfrac{1}{x(x -2)- 1(x-2)} \bigg] \\

\\\quad\longrightarrow\quad \displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{x-2}{x(x-1)}-\dfrac{1}{x(x -1)(x-2)} \bigg] \\

\\\quad\longrightarrow\quad \displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{(x-2)^2-1}{x(x -1)(x-2)} \bigg] \\

\\\quad\longrightarrow\quad \displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{(x^{2} -4x+4-1}{x(x -1)(x-2)} \bigg] \\

\\\quad\longrightarrow\quad \displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{(x^{2} -4x+3}{x(x -1)(x-2)} \bigg] \\

Now, evaluate the above limit

\\\quad\longrightarrow\quad \displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{(x^{2} -3x-x+3}{x(x -1)(x-2)} \bigg] \\

\\\quad\longrightarrow\quad \displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{(x(x -3)-1(x-3)}{x(x -1)(x-2)} \bigg] \\

\\\quad\longrightarrow\quad \displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{(x -1)(x-3)}{x(x -1)(x-2)} \bigg] \\

\\\quad\longrightarrow\quad \displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{(x-3)}{x(x-2)} \bigg] \\

\\\quad\longrightarrow\quad \dfrac{1-3}{1(1-2)}\\

\\\quad\longrightarrow\quad \dfrac{-2}{-1}\\

\\\quad\longrightarrow\quad 2\\

\\\quad\therefore\quad \boxed{\displaystyle  \lim_{x \to 1} \rm \bigg[\dfrac{(x^{2} -4x+3}{x(x -1)(x-2)} \bigg] = 2 }\\

_____________________________

Similar questions