Math, asked by yshreyansh8, 4 months ago

Evaluate.
Lim x tends to 0
Sin 2 x + 3x/2x + tan 3x​

Attachments:

Answers

Answered by amansharma264
15

EXPLANATION.

\sf \implies  \lim_{x \to 0} \dfrac{sin(2x) + 3x}{2x + tan(3x)}

As we know that,

Put the value of x = 0 in equation and check their form.

\sf \implies  \lim_{x \to 0} \dfrac{sin(2(0)) + 3(0)}{2(0) + tan(3(0))}

\sf \implies  \lim_{x \to 0} = \dfrac{0}{0}

As we can see that it is the form of 0/0.

So, simply apply L HOSPITAL'S RULE in this equation, we get.

\sf \implies  \lim_{x \to 0} \dfrac{\dfrac{d}{dx} (sin(2x) + 3x)}{\dfrac{d}{dx} (2x + tan(3x))}

\sf \implies  \lim_{x \to 0} \dfrac{2cos(2x) + 3}{2 + 3sec^{2}(3x) }

Put the value of x = 0 in equation, we get.

\sf \implies  \lim_{x \to 0} \dfrac{2cos(2(0) + 3)}{2 + 3sec^{2} 3(0)}

\sf \implies  \lim_{x \to 0} \dfrac{2sin(0) + 3}{2 + 3sec^{2} (0)}

\sf \implies  \lim_{x \to 0} \dfrac{2 + 3}{2 + 3}

\sf \implies  \lim_{x \to 0}  \dfrac{5}{5} = 1

                                                                                                                     

MORE INFORMATION.

Methods of evaluation of limits.

(1) = when \lim_{x \to \infty}

In this case expression should be expressed as a function 1/x and then after removing indeterminant form, (if it is there) replace 1/x by 0.

Answered by diajain01
28

{\boxed{\underline{\tt{ \orange{Required  \:  \: Answer:-}}}}}

◉GIVEN:-

lim_{x \to0} \:  \: \frac{sin \: 2 x + 3x}{2x + tan 3x}

◉LET'S PROVE:-

lim_{x \to0} \:  \frac{ \frac{2x(sin2x)}{2x + 3x} }{ \frac{2x + 3x(tan3x)}{3x} }

 \bf{ \frac{lim2x_{x \to0} \: lim_{x \to0} \: [ \frac{sin2x}{2x}] \:   +lim3x_{x \to0 }}{lim2x_{x \to0 \:lim3x_{x \to0 \: lim_{x \to0}}}  \: [ \frac{tan \: 3x}{3x}] }}

NOW AS,

lim_{x \to0}[ \frac{tan \: 3x}{3x} ] \: and \:  \: lim_{x \to0} \: \:  [ \frac{sin \: 2x}{2x} ] \: both \: will \: \: be \: 1.

 \leadsto \:  \bf{ \frac{lim2x_{x \to0} \: lim_{x \to0} \: [ \frac{sin2x}{2x}] \:   +lim3x_{x \to0 }}{lim2x_{x \to0 \:lim3x_{x \to0 \: lim_{x \to0}}}  \: [ \frac{tan \: 3x}{3x}] }}

 \leadsto \:  \frac{lim2x.1_{x \to 0} \:  + lim3x _{x \to0}}{lim2x_ {x \to0} + lim3x.1_ {x \to0}}

 \leadsto \: lim_{x \to0} \:  \frac{2x + 3x}{2x + 3x}

 \leadsto \:  lim1_{x \to0} \:  = 1

:  \longrightarrow \:{ \boxed{ \purple{ \tt{ lim_{x \to0} \:  \: \frac{sin \: 2 x + 3x}{2x + tan 3x}  = 1}}}}

HOPE IT HELPS

Similar questions