Math, asked by koyal226, 1 year ago

evaluate. lim.x tends to 0 sinx - tanx/ x3

Answers

Answered by hukam0685
45
Solution:
lim \: x \:  -> 0 \:  \:  \frac{sinx - tan \: x}{ {x}^{3} }  \\  \\
We know that

 \tan(x)  =  \frac{sin \: x}{cos \: x} \\  \\
lim \: x \:  -> 0 \:  \:  \frac{sinx -  \frac{sin \: x}{cos \: x} }{ {x}^{3} }  \\  \\lim \: x \:  -> 0  \: \frac{sin \: x \: cos \: x - sin \: x}{cos \: x \:  {x}^{3} }  \\ \\lim \: x \:  -> 0   \:  \: \frac{sin \: x(cos \: x - 1)}{cos \: x \:  {x}^{3} }  \\ \\lim \: x \:  -> 0   \:  \: \frac{tan \: x}{x}  \:  \: lim \: x \:  -> 0  \frac{ - 2 {sin}^{2} \frac{x}{2}  }{ {x}^{2} }  \\  \\  =  >  1. \:  \: lim \: x \:  -> 0 \frac{ -  \frac{2}{4}  {sin}^{2} \frac{x}{2}  }{ {( \frac{x}{2}) }^{2} } \\  \\  =  > 1.( \frac{ - 1}{2} ) \\  \\  =  -  \frac{1}{2}  \\  \\
Hope it helps you.
Similar questions