Evaluate lim x tends to 2 fx if exist where fx={x-[x]}
Answers
Answered by
7
HEYA!!
{ x } = x - [ x ]
_______________________________
R.H.L
lt ( 2 + h ) - 2 [ 2 + h ]
h–>0
lt ( 2 + h ) - 2 [ 2 + 0 ]
h–>0
lt ( 2 ) - 2 ( 2 )
h–>0
= -2
L.H.L
lt ( 2 - h ) -2 [ 2 - h ]
h–>0
lt ( 2 - 0 ) - 2 [ 2 - h ]
h–>0
= 2 - 2 ( 1 )
= 2 - 2
= 1
L.H.L ≠ R.H.L
So,limit of this function at x = 2 doesn't exist.
______________________________
For
L.H.L
lt [ a - h ] = a - 1
h–>0
where [ ] is G.I.F
{ x } = x - [ x ]
_______________________________
R.H.L
lt ( 2 + h ) - 2 [ 2 + h ]
h–>0
lt ( 2 + h ) - 2 [ 2 + 0 ]
h–>0
lt ( 2 ) - 2 ( 2 )
h–>0
= -2
L.H.L
lt ( 2 - h ) -2 [ 2 - h ]
h–>0
lt ( 2 - 0 ) - 2 [ 2 - h ]
h–>0
= 2 - 2 ( 1 )
= 2 - 2
= 1
L.H.L ≠ R.H.L
So,limit of this function at x = 2 doesn't exist.
______________________________
For
L.H.L
lt [ a - h ] = a - 1
h–>0
where [ ] is G.I.F
Similar questions