Math, asked by frozenjunction12, 6 months ago

Evaluate lim x tends to π/2 (secx - tanx)

Answers

Answered by yamanjaikumar
1

Step-by-step explanation:

LIMIT. (secx - tanx)

x->π/2

lim. (1/cosx - sinx/cosx)

x->π/2

lim. ((1-sinx)/cosx)

x->π/2

lim

Answered by tarracharan
4

 lim_{x -  >  \frac{\pi}{2} }(secx - tanx)(\frac{secx+tanx}{secx+tanx} )\\\\  =lim_{x -  >  \frac{\pi}{2} }( \frac{sec²x-tan²x}{secx+tanx})\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\\ \\= lim_{x -  >  \frac{\pi}{2} }( \frac{1}{\frac{1}{cosx}+\frac{sinx}{cosx}}  ) \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\\\\ =lim_{x -  >  \frac{\pi}{2} }( \frac{cosx}{1+sinx}  )\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\\\ =\frac{ \cos( \frac{\pi}{2} ) }{ 1+\sin( \frac{\pi}{2} ) }  =  \frac{0}{1+1}  =0\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:

Similar questions