Math, asked by BeulahDias8238, 3 months ago

Evaluate lim x tends to infinity (ax+1/ax-1)^x

Answers

Answered by brokendreams
7

\lim_{x \to \infty} (\frac{ax+1}{ax-1})^{x}= e^\frac{2}{a}

Step-by-step explanation:

Given: a function (\frac{ax+1}{ax-1})^{x}

To find: the value of the function as _{x \to \infty}

Check the form of the limit:

Dividing both numerator and denominator terms inside the parenthesis by x we get:

(\frac{a+\frac{1}{x}}{a- \frac{1}{x} })  ^{x}

As _{x \to \infty},   _{\frac{1}{x}  \to 0}

⇒  \lim_{x \to \infty} (\frac{a+\frac{1}{x}}{a- \frac{1}{x} })  ^{x}=1^{\infty}

The limit is of the form 1^{\infty} which is indeterminate.

How to find the limit?

Let f(x) and g(x) be two functions such that;

\lim_{x \to \infty} f(x)=1   and

\lim_{x \to \infty} g(x)=\infty

Then we have:

\lim_{x \to \infty} f(x)^{g(x)} =e^{ \lim_{x \to \infty} (f(x)-1)*g(x)}

Using this formula for the given question we get:

\lim_{x\to \infty}  (\frac{ax+1}{ax-1})^{x}= e^{ \lim_{x \to \infty}(\frac{ax+1}{ax-1} -1)*x }

                        =e^{ \lim_{x \to \infty} (\frac{ax+1-ax+1}{ax-1})*x}

                        =e^{ \lim_{x \to \infty} \frac{2x}{ax-1}  }

                        =e^{ \lim_{x \to \infty} \frac{2}{a-\frac{1}{x} }  }

                       =e^{\frac{2}{a} }                                 [ \lim_{x \to \infty} \frac{1}{x}=0  ]

Hence, the required limit is e^\frac{2}{a}

Similar questions