Math, asked by sradhabiju709, 11 months ago

Evaluate lim xtends to 0 [1-cos4x]÷[x^2]]

Answers

Answered by ihrishi
1

Step-by-step explanation:

lim_{x \to 0} [1 - cos4x]\div  {x}^{2}  \\   \\ = lim_{x \to 0}[1 - (1 - 2 {sin}^{2} \:  2x] \div  {x}^{2}  \\  \\  = lim_{x \to 0}[1 - 1  + 2 {sin}^{2} \:  2x] \div  {x}^{2}  \\  \\  = lim_{x \to 0}[ 2 {sin}^{2} \:  2x] \div  {x}^{2}  \\  \\   =2 \times  lim_{x \to 0}[ {sin}^{2} \:  2x] \div  {x}^{2}  \\  \\ =2 \times  lim_{x \to 0} \frac{{sin}^{2} \:  2x}{ {x}^{2} } \\  \\ =2 \times  lim_{x \to 0}( \frac{{sin} \:  2x}{ {x}}) ^{2}   \times  \frac{4}{4} \\  \\ =2 \times  lim_{x \to 0}( \frac{{sin} \:  2x}{ {2x}}) ^{2}   \times 4 \\  \\  =8 \times (  lim_{x \to 0} \: \frac{{sin} \:  2x}{ {2x}}) ^{2} \\  \\ =8 \times( 1) ^2 \\   \\  =8 \times1 \\   \\ = 8 \\   \\ thus \\  \\  \purple{ \boxed{lim_{x \to 0} [1 - cos4x]\div  {x}^{2}  = 8}}

Similar questions