Math, asked by dhulipudisaranya, 1 month ago

evaluate limit X tends to 0 (cosax-cosbx)/x^2​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \dfrac{cosax - cosbx}{ {x}^{2} }

If we put directly x = 0, we get

\rm \:  =  \:  \: \dfrac{cos0 - cos0}{ {0}^{2} }

\rm \:  =  \:  \: \dfrac{0}{0}

\rm \:  =  \:  \: which \: is \: meaningless

So, to evaluate the limit of the above function,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \dfrac{cosax - cosbx}{ {x}^{2} }

We know,

\boxed{ \bf{ \: cosx - cosy = 2sin\bigg(\dfrac{x + y}{2} \bigg) \: sin\bigg(\dfrac{y - x}{2} \bigg)}}

So, using this result, we get

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0} \dfrac{2sin\bigg(\dfrac{ax + bx}{2} \bigg) \: sin\bigg(\dfrac{bx - ax}{2} \bigg)}{ {x}^{2} }

can be rewritten as

\rm \:  =  \:  \: 2\displaystyle\lim_{x \to 0} \dfrac{sin\bigg(\dfrac{a+ b}{2} \bigg)x}{x}  \times \displaystyle\lim_{x \to 0} \dfrac{sin\bigg(\dfrac{b - a}{2} \bigg)x}{x}

\rm = 2\displaystyle\lim_{x \to 0} \dfrac{sin\bigg(\dfrac{a+ b}{2} \bigg)x}{\bigg(\dfrac{a + b}{2} \bigg)x} \times \bigg(\dfrac{a + b}{2} \bigg)  \times \displaystyle\lim_{x \to 0} \dfrac{sin\bigg(\dfrac{b - a}{2} \bigg)x}{\bigg(\dfrac{b - a}{2} \bigg)x} \times \bigg(\dfrac{b - a}{2} \bigg)

We know,

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}  \frac{sinx}{x} = 1}}

So, using this result, we get

\rm \:  =  \:  \: 2 \times \bigg(\dfrac{a + b}{2} \bigg) \times \bigg(\dfrac{b - a}{2} \bigg)

\rm \:  =  \:  \: \dfrac{ {b}^{2}  -  {a}^{2} }{2}

Hence,

 \underbrace{ \boxed{\:\displaystyle\lim_{x \to 0}  \bf \: \:  \:  \dfrac{cosax \:  -  \: cosbx}{ {x}^{2} }  \: =  \:  \frac{ {b}^{2} \:   -   \: {a}^{2} }{2} \:  \:  \: }}

Additional Information :-

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}  \frac{tanx}{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}  \frac{tan {}^{ - 1} x}{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}  \frac{sin {}^{ - 1} x}{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}  \frac{log(1 + x)}{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}  \frac{ {e}^{x}  - 1}{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}  \frac{ {a}^{x}  - 1}{x} = loga}}

Similar questions