Math, asked by srinissyp, 3 months ago

evaluate: limit x tends to 0 e power 3x-1 divided by x​

Attachments:

Answers

Answered by anindyaadhikari13
6

S O L U T I O N:

Given Limit:

\displaystyle \rm =\lim_{x\to0}\bigg(\dfrac{e^{-x}-1}{x}\bigg)

If we put x = 0, we get:

\displaystyle \rm =\dfrac{e^{0}-1}{0}

\displaystyle \rm =\dfrac{1-1}{0}

\displaystyle \rm =\dfrac{0}{0}

Which is an indeterminate form.

So, let us use L'Hopital's rule here.

Given Limit:

\displaystyle \rm =\lim_{x\to0}\bigg(\dfrac{e^{-x}-1}{x}\bigg)

Applying L'Hopital's rule, we get:

\displaystyle \rm =\lim_{x\to0}\bigg(\dfrac{-e^{-x}}{1}\bigg)

\displaystyle \rm =\dfrac{-e^{0}}{1}

\displaystyle \rm =\dfrac{-1}{1}

\rm=-1

Therefore:

\displaystyle \rm\longrightarrow\lim_{x\to0}\bigg(\dfrac{e^{-x}-1}{x}\bigg)=-1

⊕ Which is our required answer.

L E A R N  M O R E:

 \displaystyle \rm1. \: \: \lim_{x \to0} \sin(x) = 0

 \displaystyle \rm2. \: \: \lim_{x \to0} \cos(x) = 1

 \displaystyle \rm3. \: \: \lim_{x \to0} \dfrac{ \sin(x) }{x} = 1

 \displaystyle \rm4. \: \: \lim_{x \to0} \dfrac{ \tan(x) }{x} = 1

 \displaystyle \rm5. \: \: \lim_{x \to0} \dfrac{1 - \cos(x) }{x} = 1

 \displaystyle \rm6. \: \: \lim_{x \to0} \dfrac{ \sin^{ - 1} (x) }{x} = 1

 \displaystyle \rm7. \: \: \lim_{x \to0} \dfrac{ \tan^{ - 1} (x) }{x} = 1

 \displaystyle \rm8. \: \: \lim_{x \to0} \dfrac{ {e}^{x} - 1 }{x} = 1

 \displaystyle \rm9. \: \: \lim_{x \to0} \dfrac{ {a}^{x} - 1 }{x} = \ln(a)

 \displaystyle \rm10. \: \: \lim_{x \to0} \dfrac{ \log(1 + x) }{x} = 1

Answered by Anonymous
7

Answer:

-1

Step-by-step explanation:

Given limit,

 \longrightarrow \lim\limits_{x\to 0} \dfrac{e^{-x} - 1}{x}

The given limit will attain (0/0) form by direct substitution. Therefore we have choose another method to evaluate our limit.

Consider again,

\longrightarrow \lim\limits_{x\to 0} \dfrac{e^{-x} - 1}{x}

\longrightarrow \lim\limits_{x\to 0} \dfrac{ - (e^{-x} - 1)}{ - x}

\longrightarrow  - \lim\limits_{ - x\to 0} \dfrac{e^{-x} - 1}{ - x}

We have a standard limit:

  •  \boxed{\lim\limits_{x\to 0} \dfrac{e^x-1}{x} = 1}

Applying this will give us:

\longrightarrow  -(1)

So the required answer is:

 \underline{\boxed{\lim\limits_{x\to 0} \dfrac{e^{-x} - 1}{x} =  - 1}}

Similar questions