Math, asked by bindur4319, 1 year ago

Evaluate limit x tends to 1 (e^x - 1)÷root over 1 - cosx

Answers

Answered by sprao534
2
Please see the attachment
Attachments:
Answered by Anonymous
2

The correct question is

Evaluate limit x tends to 0 for f(x) = \frac{e^{x}-1 }{\sqrt{1-cosx} }  

The solution of  

\lim_{x \to 0\1} \frac{e^{x}-1 }{\sqrt{1-cosx} } = \sqrt{2}  

  • We have,

      \lim_{x \to 0\1} \frac{e^{x}-1 }{\sqrt{1-cosx} }

  • Now, by using double angle formula for cosx that is

         cos2x = 1 - 2sin^{2}x\\ 1 - cos2x= 2sin^{2}x

      we get,

             =\lim_{x \to 0\1} \frac{e^{x}-1 }{\sqrt{2sin^{2}\frac{x}{2}  } }

             =\lim_{x \to 0\1} \frac{e^{x}-1 }{\sqrt{2} sin\frac{x}{2}  }

  • dividing both numerator and denominator by 'x' , we get

       =  \lim_{x \to 0\1} \frac{\frac{e^{x}-1 }{x} }\sqrt{2} {\frac{sin\frac{x}{2} }{\frac{x}{2}2 } }

       = \frac{2}{\sqrt{2} } \frac{ \lim_{x \to 0\1} \frac{e^{x}-1 }{x}  }{ \lim_{x \to 0\1} \frac{sin\frac{x}{2} }{\frac{x}{2} }  }

  • Now, by using standard sine limit and exponential limits that is

     \lim_{x \to 0\1} \frac{sinx}{x} = 1  and  \lim_{x \to 0\1} \frac{e^{x} -1}{x} = 1 , we get

     \frac{2}{\sqrt{2} } \frac{ \lim_{x \to 0\1} \frac{e^{x}-1 }{x}  }{ \lim_{x \to 0\1} \frac{sin\frac{x}{2} }{\frac{x}{2} }  }  = \frac{2}{\sqrt{2} } (\frac{1}{1}  )

Therefore,

\lim_{x \to 0\1} \frac{e^{x}-1 }{\sqrt{1-cosx} } = \sqrt{2}

Similar questions