Math, asked by ssatender5823, 11 months ago

Evaluate limit x tends to zero 10 x minus sin x by x cube

Answers

Answered by anirudhbantu55
0

Step-by-step explanation:

lt. 10x-sinx/x cube

x--)0

0/0square-1

-1

Answered by harendrachoubay
1

The value of \lim_{x \to 0} \dfrac{\tan x-\sin x}{x^3} is equal to \dfrac{1}{2}.

Step-by-step explanation:

The complete question:

\lim_{x \to 0} \dfrac{\tan x-\sin x}{x^3}

To find, the value of \lim_{x \to 0} \dfrac{\tan x-\sin x}{x^3} = ?

\lim_{x \to 0} \dfrac{\tan x-\sin x}{x^3}

=\lim_{x \to 0} \dfrac{\dfrac{\sin x}{\cos x} -\sin x}{x^3}

=\lim_{x \to 0} \dfrac{\sin x(1-\cos x)}{\cos x.x^3}

=\lim_{x \to 0} \dfrac{\dfrac{\sin x}{\cos x} 2\sin^2 \dfrac{x}{2}}{x^3}

=\lim_{x \to 0} 2\dfrac{\tan x}{x}(\dfrac{1}{4} )(\dfrac{\sin \dfrac{x}{2}}{\dfrac{x}{2}})^2

We know that,

\lim_{x \to 0} \dfrac{\tan x}{x} = 1 and

\lim_{x \to 0} \dfrac{\sin x}{x} = 1

= 2\times \dfrac{1}{4}

= \dfrac{1}{2}

∴ The value of \lim_{x \to 0} \dfrac{\tan x-\sin x}{x^3} = \dfrac{1}{2}

Thus, the value of \lim_{x \to 0} \dfrac{\tan x-\sin x}{x^3} is equal to \dfrac{1}{2}.

Similar questions