Math, asked by bhuvi0626, 1 year ago

evaluate limit X tends to zero sin 2x / sin x ​

Answers

Answered by shadowsabers03
4

Given,

\displaystyle \lim_{x\to0}\dfrac {\sin (2x)}{\sin x}

On taking x directly as 0, we get the indeterminate form.

\dfrac {\sin(2\times 0)}{\sin 0}=\dfrac {\sin0}{\sin 0}=\dfrac {0}{0}

But, we know that,

\sin (2x)=2\sin x\cos x

Then,

\displaystyle \lim_{x\to0}\dfrac {\sin (2x)}{\sin x}=\lim_{x\to0}\dfrac {2\sin x\cos x}{\sin x}\\\\\\\lim_{x\to0}\dfrac {\sin (2x)}{\sin x}=\lim_{x\to0}2\cos x\\\\\\\lim_{x\to0}\dfrac {\sin (2x)}{\sin x}=2\cos 0\\\\\\\lim_{x\to0}\dfrac {\sin (2x)}{\sin x}=\mathbf {2}

Or we can use L'hospital's Rule.

\displaystyle \lim_{x\to0}\dfrac {\sin (2x)}{\sin x}=\lim_{x\to0}\dfrac {(\sin (2x))'}{(\sin x)'}\\\\\\\lim_{x\to0}\dfrac {\sin (2x)}{\sin x}=\lim_{x\to0}\dfrac {2\cos (2x)}{\cos x}\\\\\\\lim_{x\to0}\dfrac {\sin (2x)}{\sin x}=\dfrac {2\cos (2\times0)}{\cos 0}\\\\\\\lim_{x\to0}\dfrac {\sin (2x)}{\sin x}=\mathbf {2}

where f' is the first derivative of f wrt x.

However 2 is the answer.

#answerwithquality

#BAL

Similar questions