Evaluate limx->a (sinx-sina)/(√x-√a)
Answers
Answered by
21
lim [(sin x - sin a) /(√x - √a)] =
x→a
the limit is of the form 0/0
let's apply the sum-to-product formula sin α - sin β = 2sin[(α - β)/2] cos[(α + β)/2]:
lim { {2sin[(x - a)/2] cos[(x + a)/2]} /(√x - √a)] =
x→a
let's multiply numerator and denominator by √x + √a. yielding a difference of squares in the denominator:
lim { {2(√x + √a) sin[(x - a)/2] cos[(x + a)/2]} /[(√x + √a)(√x - √a)]} =
x→a
lim { {2(√x + √a) sin[(x - a)/2] cos[(x + a)/2]} /[(√x)² - (√a)²]} =
x→a
lim { {2(√x + √a) sin[(x - a)/2] cos[(x + a)/2]} /(x - a)} =
x→a
let's rearrange this as:
lim {(√x + √a) sin[(x - a)/2] cos[(x + a)/2] [2 /(x - a)]} =
x→a
lim { {(√x + √a) sin[(x - a)/2] cos[(x + a)/2]} /[(x - a)/2]} =
x→a
lim {(√x + √a) cos[(x + a)/2] { {sin[(x - a)/2]} /[(x - a)/2]} } =
x→a
where {sin[(x - a)/2]} /[(x - a)/2] is a notable limit of the form lim [(sin t) /t] = 1,
................ ..................... .................... .................. ...............t→0
in that, if we let (x - a)/2 = t, as x approaches "a", t tends to zero;
then, letting x approach "a", we obtain:
lim {[√(→a) + √a] cos{[(→a) + a]/2} (→1)} =
x→a
(√a + √a) cos[(a + a)/2] (1) =
2(√a) cos[(2a)/2] =
2(√a) cos a
x→a
the limit is of the form 0/0
let's apply the sum-to-product formula sin α - sin β = 2sin[(α - β)/2] cos[(α + β)/2]:
lim { {2sin[(x - a)/2] cos[(x + a)/2]} /(√x - √a)] =
x→a
let's multiply numerator and denominator by √x + √a. yielding a difference of squares in the denominator:
lim { {2(√x + √a) sin[(x - a)/2] cos[(x + a)/2]} /[(√x + √a)(√x - √a)]} =
x→a
lim { {2(√x + √a) sin[(x - a)/2] cos[(x + a)/2]} /[(√x)² - (√a)²]} =
x→a
lim { {2(√x + √a) sin[(x - a)/2] cos[(x + a)/2]} /(x - a)} =
x→a
let's rearrange this as:
lim {(√x + √a) sin[(x - a)/2] cos[(x + a)/2] [2 /(x - a)]} =
x→a
lim { {(√x + √a) sin[(x - a)/2] cos[(x + a)/2]} /[(x - a)/2]} =
x→a
lim {(√x + √a) cos[(x + a)/2] { {sin[(x - a)/2]} /[(x - a)/2]} } =
x→a
where {sin[(x - a)/2]} /[(x - a)/2] is a notable limit of the form lim [(sin t) /t] = 1,
................ ..................... .................... .................. ...............t→0
in that, if we let (x - a)/2 = t, as x approaches "a", t tends to zero;
then, letting x approach "a", we obtain:
lim {[√(→a) + √a] cos{[(→a) + a]/2} (→1)} =
x→a
(√a + √a) cos[(a + a)/2] (1) =
2(√a) cos[(2a)/2] =
2(√a) cos a
Answered by
10
HERE'S YOUR ANSWER
HOPE IT'S HELP YOU
♥️♥️
Attachments:
Similar questions
Math,
8 months ago
Math,
8 months ago
Psychology,
8 months ago
Computer Science,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago