Math, asked by pinaki1997, 1 year ago

evaluate log (a^3 +b^3) to the base (a+b) - log (a^2-ab+b^2) to the base (a+b)=

Answers

Answered by MrAdityaAlok
2

Answer:

1

Step-by-step explanation:

log (a3+ b3) - log (a2+b2-ab) to the base (a+b)

on expanding a3+b3 =

(a+b)(a2+b2-ab)

hence,

 log_{(a + b)}( \frac{( {a}^{2}  +  {b}^{2} - ab)(a + b) }{{a}^{2}  +  {b}^{2} - ab}  )\\

log (a+b)to the base a+b

therefore answer=1.

Answered by sharathchandra2
0

Answer:1

Step-by-step explanation:log (a3+ b3) - log (a2+b2-ab) to the base (a+b)

on expanding a3+b3 =

(a+b)(a2+b2-ab)

hence,

log_{(a + b)}( \frac{( {a}^{2}  +  {b}^{2} - ab)(a + b) }{{a}^{2}  +  {b}^{2} - ab}  )\\  

log (a+b)to the base a+b

therefore answer=1.

mark my answer as the brainliest

Similar questions