Math, asked by srikanthannepu2, 1 year ago

evaluate log base root 2 32

Answers

Answered by AslamAslam
16
The value of log base root 2 32 is 5/2
Answered by pulakmath007
0

\displaystyle \sf{ log_{ \sqrt{2} }(32)   } = 10

Given :

\displaystyle \sf{ log_{ \sqrt{2} }(32)   }

To find :

The value of the expression

Formula :

We are aware of the formula on logarithm that

 \sf{1.  \:  \: \:  log( {a}^{n} ) = n log(a)  }

 \sf{2. \:  \:   log_{a}(a)   = 1}

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{ log_{ \sqrt{2} }(32)   }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{ log_{ \sqrt{2} }(32)   }

\displaystyle \sf{  = log_{ \sqrt{2} } (  {2}^{5} )   }

\displaystyle \sf{  = log_{ \sqrt{2} } \:  \bigg[  {  \bigg({( \sqrt{2} ) }^{2} \bigg) }^{5}  \bigg]   }

\displaystyle \sf{  = log_{ \sqrt{2} } \:  \bigg[  {  \bigg( \sqrt{2}  \bigg) }^{(2 \times 5)}  \bigg]   }

\displaystyle \sf{  = log_{ \sqrt{2} } \:    {  \bigg( \sqrt{2}  \bigg) }^{10}   }

\displaystyle \sf{  = 10 \: log_{ \sqrt{2} } \:  ( \sqrt{2} )\:  \:  \: \bigg[ \:  \because \: log( {a}^{n} ) = n log(a)\bigg]    }

\displaystyle \sf{  = 10 \times 1\:  \:  \: \bigg[ \:  \because \: log_{a}(a)   = 1\bigg]  }

 = 10

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 2log x base y=6,then the relation between x and y

https://brainly.in/question/27199002

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions