Math, asked by prathamdon12345, 4 months ago

Evaluate : log(root(x)) / log(x^2) *

Answers

Answered by Arceus02
1

Given:-

  •  \sf \: \dfrac{log (\sqrt{x}) }{log( {x}^{2}) }

We have to evaluate this

Answer:-

 \sf \: \dfrac{log (\sqrt{x}) }{log( {x}^{2}) }

Using the formula,

{\blue{\bigstar}} \boxed{\sf{ \dfrac{log(a)}{log(b)} = log_b(a)}}

\longrightarrow \sf log_{x^2}(\sqrt{x})

We know that, \sf \sqrt{x} = x^{ { }^{1} \! /  { }_{2}}

\longrightarrow \sf log_{x^2}(x^{ { }^{1} \! /  { }_{2}})

{\green{\bigstar}} \boxed{\sf{log_{a^m}(b^n) = \dfrac{n}{m}log_a(b)}}

\longrightarrow \sf \dfrac{1}{2}\times \dfrac{1}{2} log_{x}(x)

We know that,

{\red{\bigstar}} \boxed{\sf{log_x(x) = 1 }}

So,

\longrightarrow \sf \dfrac{1}{4}\times 1

\longrightarrow \sf \dfrac{1}{4}

Hence,

\longrightarrow \underline{\underline{\sf{\green{ \dfrac{log (\sqrt{x}) }{log( {x}^{2}) } = \dfrac{1}{4} }}}}

Similar questions