Math, asked by satishbalagiri, 11 months ago

evaluate log2 ^150 interms of x and y such that logo2 ^3=x and logo 2^5=y​

Answers

Answered by MaheswariS
2

\textbf{Formula used:}

\textbf{Product rule:}

\boxed{\bf\,log_a(MN)=log_aM+log_aN}

\textbf{Power rule:}

\boxed{\bf\,log_aM^n=n\;log_aM}

\textbf{Given:}

\log_23=x\;\text{and}\;\log_25=y

\textbf{To find:}

\log_2150\;\text{interms of x and y}

\text{Now,}

\log_2150

=\log_2(2{\times}3{\times}5^2)

\text{Using product rule, we get}

=\log_22+\log_23+\log_25^2

\text{Using power rule, we get}

=\log_22+\log_23+2\;\log_25

=1+x+2\;y

\therefore\boxed{\bf\log_2150=1+x+2\;y}

Find more:

Expand log 243 to the base 3 root 3

https://brainly.in/question/4637472#

Expand log120/49

https://brainly.in/question/15415039

Answered by sanjeevk28012
0

Given :

The log term as Log_2 150

And Log_23 = x

      Log_25 = y

To Find :

Evaluate  Log_2 150 in terms of x and y

Solution :

∵  Log_2 150 =  Log_2 ( 2 × 3 × 5²)

               [ ∵ Log ( m ×n ) = Log m + Log n ]

                  =  Log_2 2 +  Log_2 3 +  Log_2 5²  

                [ ∵ Log a^{b} = b Log a ]

                  =  Log_2 2 +  Log_2 3 + 2 Log_2 5  

                 =  1 +  Log_2 3 + 2 Log_2 5              [Log_a a = 1 ]

                  = 1 + x + y                              [ substituting value of Log_23 , Log_25 ]

 Log_2 150 =  1 + x + y

Hence, The value of Log_2 150 in terms of x and y is  1 + x + y  Answer

Similar questions