Math, asked by sharikashaik, 2 months ago

evaluate Lt x_0
 \sin3x -  \sinx \div  \sin4x -  \sin2x

Answers

Answered by shadowsabers03
7

We're asked to evaluate,

\displaystyle\longrightarrow L=\lim_{x\to0}\dfrac{\sin(3x)-\sin x}{\sin(4x)-\sin(2x)}\quad\quad\dots(1)

We have,

  • \sin A-\sin B=2\cos\left(\dfrac{A+B}{2}\right)\sin\left(\dfrac{A-B}{2}\right)

The numerator is,

\longrightarrow\sin(3x)-\sin x=2\cos\left(\dfrac{3x+x}{2}\right)\sin\left(\dfrac{3x-x}{2}\right)

\longrightarrow\sin(3x)-\sin x=2\cos\left(2x\right)\sin x

And the denominator is,

\longrightarrow\sin(4x)-\sin(2x)=2\cos\left(\dfrac{4x+2x}{2}\right)\sin\left(\dfrac{4x-2x}{2}\right)

\longrightarrow\sin(4x)-\sin(2x)=2\cos\left(3x\right)\sin x

Then (1) becomes,

\displaystyle\longrightarrow L=\lim_{x\to0}\dfrac{2\cos(2x)\sin x}{2\cos(3x)\sin x}

\displaystyle\longrightarrow L=\lim_{x\to0}\dfrac{\cos(2x)}{\cos(3x)}

Now putting x=0,

\displaystyle\longrightarrow L=\lim_{x\to0}\dfrac{\cos(2\cdot0)}{\cos(3\cdot0)}

\displaystyle\longrightarrow\underline{\underline{L=1}}

Hence 1 is the answer.

Similar questions