Math, asked by subhashreep844, 8 months ago

Evaluate,
m) sinºx dx​

Attachments:

Answers

Answered by shrinivasnavindgikar
1

Answer:

here is your answer

Step-by-step explanation:

please thank follow and mark brainliest

Attachments:
Answered by Anonymous
10

AnswEr :

Given Expression,

 \displaystyle \sf l =  \int {sin}^{3} x.dx \\  \\  \longrightarrow\displaystyle \sf l =  \int ( sin \: x. {sin}^{2} x)dx

Since, sin²x = 1 - cos²x

 \longrightarrow \: \displaystyle \sf l =  \int {sin}^{} x(1 -  {cos}^{2}x) .dx

Let t = cos(x)

Differentiating w.r.t x on both sides,

 \implies \sf \dfrac{dt}{dx}=   - sin \: x \\  \\  \implies \sf \: dx =  -  \dfrac{dt}{sin \: x}

Therefore,

 \longrightarrow \: \displaystyle \sf l =  -\int { \cancel{sin}}^{} x(1 -  {t}^{2}) . \dfrac{dt}{ \cancel{sin \: x} } \\  \\  \longrightarrow \displaystyle \sf l =  \int {t}^{2} dt -  \int dt \\  \\  \longrightarrow \sf l =  \dfrac{ {t}^{3} }{3} - t + c  \\   \\  \longrightarrow \boxed{ \boxed{ \sf l =  \dfrac{ {cos}^{3} x}{3}  - cos \: x + c}}

Similar questions