Math, asked by arihantrajeev30105, 9 days ago

Evaluate n if Ltx-3 (Xn -3 n )/(X-3) =108​

Answers

Answered by anindyaadhikari13
3

Solution:

To Determine:- The value of n.

Given Equation :-

 \displaystyle \rm \longrightarrow \lim_{x \to3} \bigg( \dfrac{ {x}^{n} -  {3}^{n} }{x - 3}  \bigg)  = 108

We know that:-

 \displaystyle \rm \longrightarrow \lim_{x \to a}  \dfrac{ {x}^{n} -  {a}^{n} }{x - a} = n {a}^{n - 1}

Therefore, the equation becomes :-

  \rm \longrightarrow  n \times  {3}^{n - 1}  = 108

  \rm \longrightarrow  n \times  {3}^{n - 1}  =3 \times 3 \times 3 \times 4

  \rm \longrightarrow  n \times  {3}^{n - 1}  =4 \times  {3}^{3}

  \rm \longrightarrow  n \times  {3}^{n - 1}  =4 \times  {3}^{4 - 1}

Comparing both sides, we get :-

  \rm \longrightarrow  n = 4

Therefore, the value of n satisfying the equation is 4.

Learn More:

Some standard limits.

\displaystyle\rm 1.\:\: \lim_{x\to0}\sin(x)=0

\displaystyle\rm 2.\:\: \lim_{x\to0}\cos(x)=1

\displaystyle\rm 3.\:\: \lim_{x\to0}\dfrac{\sin(x)}{x}=1

\displaystyle\rm 4.\:\: \lim_{x\to0}\dfrac{\tan(x)}{x}=1

\displaystyle\rm 5.\:\: \lim_{x\to0}\dfrac{1-\cos(x)}{x}=0

\displaystyle\rm 6.\:\: \lim_{x\to0}\dfrac{\sin^{-1}(x)}{x}=1

\displaystyle\rm 7.\:\: \lim_{x\to0}\dfrac{\tan^{-1}(x)}{x}=1

\displaystyle\rm 8.\:\: \lim_{x\to0}\dfrac{\log(1+x)}{x}=1

\displaystyle\rm 9.\:\: \lim_{x\to0}\dfrac{e^{x}-1}{x}=1

Similar questions