Math, asked by KunalGanvir, 1 year ago

Evaluate :
n!/r!(n-r)!for
n=8 and r= 6​

Answers

Answered by sushiladevi4418
6

Answer:

The solution for \dfrac{n!}{r!(n-1)!} is \dfrac{1}{90}

Step-by-step explanation:

Given,

  • n = 8
  • r = 6

We have to evaluate,

\dfrac{n!}{r!(n-1)!} -------------------(i)

put n = 8 and r = 6 in above equation (i)

\dfrac{8!}{6!(8-1)!}

\dfrac{8!}{6!7!} -------------------(ii)

where,

  • 8! = 8\times7\times6\times5\times4\times3\times2\times1
  • 7! = 7\times6\times5\times4\times3\times2\times1
  • 6! = 6\times5\times4\times3\times2\times1

put above values in equation (ii)

\dfrac{8\times7\times6\times5\times4\times3\times2\times1}{7\times6\times5\times4\times3\times2\times1\times6\times5\times4\times3\times2\times1}

= \dfrac{1}{6\times5\times3\times1}

= \dfrac{1}{90}

Answered by ishwarilodha13
0

Step-by-step explanation:

hope it helps u

plz mark as brainlist

Attachments:
Similar questions