Math, asked by aamnahkhan3019, 6 months ago

Evaluate : Please help​

Attachments:

Answers

Answered by Anonymous
2

Solution:-

 \rm \to \:  \dfrac{ {a}^{2n + 1}a^{(2n + 1)(2n - 1)}  }{ {a}^{n(4n - 1)}(a ^{2} )^{2n + 3} }

Use this identity

 \rm \to \: (x - y)(x + y)  =  {x}^{2}  -  {y}^{2}

Now use this identity

 \rm \to \:  \dfrac{ {a}^{2n + 1}  {a}^{(2n) {}^{2}  - 1} }{ {a}^{n(4n - 1)} ({a}^{2} ) {}^{2n + 3}  }

Use exponential law

 \rm \to \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \rm \to \: (a {}^{x} ) {}^{y}  =  {a}^{xy}

 \rm \to \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

Now we get

 \rm \to \:  \dfrac{a^{2n + 1}a {}^{4 {n}^{2}   - 1}  }{ {a}^{4 {n}^{2}  - n}  {a}^{4n + 6} }

 \rm \to \:  \dfrac{ {a}^{2n + 1 + 4 {n}^{2} - 1 } }{ {a}^{4 {n}^{2}  - n + 4n + 6} }

\rm \to \:  \dfrac{ {a}^{2n  + 4 {n}^{2}  } }{ {a}^{4 {n}^{2}  + 3n + 6} }

 \rm \to {a}^{2n + 4 {n}^{2} - 4 {n}^{2} - 3n - 6  }

\rm \to {a}^{2n +  \cancel{4 {n}^{2}} - \cancel {4 {n}^{2} }- 3n - 6  }

 \rm \to {a}^{ - n - 6}

 \rm \to \:  {a}^{ - (n + 6)}

 \rm \to \:  \dfrac{1}{a {}^{n + 6} }

Answer

 \rm \to \:  \dfrac{1}{a {}^{n + 6} }

Similar questions