evaluate sec^2 theta-(sin^2 theta -2sin^4theta / 2cos^4theta - cos^2 theta ) =1
Answers
Answered by
10
Given
sec²∅ - (sin²∅ - 2sin⁴∅)/(2cos⁴∅ - cos²∅) = 1
LHS:
sec²∅ - (sin²∅ - 2sin⁴∅)/2cos⁴∅ - cos²∅)
= sec²∅ - [sin²∅(1 - 2sin²∅)]/[cos²∅(2cos²∅ - 1)]
= sec²∅ - tan²∅(1-2sin²∅)/(2cos²∅-1)
We know that,
cos2∅ = 1 - 2sin²∅ = 2cos²∅ - 1
Thus,
sec²∅ - tan²∅(cos2∅/cos2∅)
= sec²∅ - tan²∅
= 1
Hence,proved
Similar questions