Evaluate
sec(360°-θ) tan(180°-θ) + cot(90°+θ) csc(270°-θ)
Answers
Answered by
3
➠Solution:-
-----------------------------------
Using ASTC formula, we have
⇒sec (360°-θ) = sec θ
⇒tan (180°-θ) = - tan θ
⇒cot (90°+θ) = - tan θ
⇒csc (270°-θ) = - sec θ
Then, the given expression is
= sec θ x (-tan θ) + (-tan θ) x (-sec θ)
= - sec θ x tan θ + sec θ x tan θ
= 0
Hence, the simplification of the given trigonometric expression is equal to 0.
➠More to know
-------------------------------------------------------
⇒ sin (360° - θ) = sin (0° - θ) = sin (- θ) = - sin θ
⇒ cos (360° - θ) = cos (0° - θ) = cos (- θ) = cos θ
⇒ tan (360° - θ) = tan (0° - θ) = tan (- θ) = - tan θ
⇒ csc (360° - θ) = csc (0° - θ) = csc (- θ) = - csc θ
⇒ sec (360° - θ) = sec (0° - θ) = sec (- θ) = sec θ
⇒ cot (360° - θ) = cot (0° - θ) = cot (- θ) = - cot θ
--------------------------------------------------------
Similar questions
English,
3 months ago
Math,
3 months ago
Social Sciences,
6 months ago
English,
6 months ago
Social Sciences,
1 year ago
Physics,
1 year ago