Math, asked by ilovemyindia5762, 1 year ago

evaluate sec square(90-theta)-cot square theta/2(sin square 25+sin square 65)

Answers

Answered by harshansknspmc
24

Hey mate there is your answer in photo


Attachments:
Answered by pinquancaro
14

Answer:

\frac{\sec^2(90-\theta)-\cot^2\theta}{2(\sin^2 25+\sin^2 65)}=\frac{1}{2}    

Step-by-step explanation:

Given : Expression \frac{\sec^2(90-\theta)-\cot^2\theta}{2(\sin^2 25+\sin^2 65)}

To find : Evaluate the expression ?

Solution :

Expression \frac{\sec^2(90-\theta)-\cot^2\theta}{2(\sin^2 25+\sin^2 65)}

=\frac{\csc^2\theta-\cot^2\theta}{2(\sin^2 (90-65)+\sin^2 65)}

=\frac{1}{2(\cos^2 65+\sin^2 65)}

We know, \cos^2\theta+\sin^2\theta=1

=\frac{1}{2(1)}

=\frac{1}{2}

Therefore, \frac{\sec^2(90-\theta)-\cot^2\theta}{2(\sin^2 25+\sin^2 65)}=\frac{1}{2}

Similar questions