Math, asked by jhonestrevension7, 6 days ago

Evaluate show that ∆URL is a right triangle for U(6, 3), R(4, 5), and L(2,1)

Answers

Answered by abhayanand42173
0

Answer:Then, the area RR of the triangle ABCABC is R=12bhR=12bh .

Then, the area RR of the triangle ABCABC is R=12bhR=12bh .Now, look at ΔADBΔADB . It is a right triangle with hypotenuse AB¯¯¯¯¯AB¯ that has a length of cc units.

Then, the area RR of the triangle ABCABC is R=12bhR=12bh .Now, look at ΔADBΔADB . It is a right triangle with hypotenuse AB¯¯¯¯¯AB¯ that has a length of cc units.Consider the sine of ∠A∠A .

Then, the area RR of the triangle ABCABC is R=12bhR=12bh .Now, look at ΔADBΔADB . It is a right triangle with hypotenuse AB¯¯¯¯¯AB¯ that has a length of cc units.Consider the sine of ∠A∠A .sin(A)=Opposite SideHypotenuse                =hcsin(A)=hc⇒h=csin(A)sin(A)=Opposite SideHypotenuse                =hcsin(A)=hc⇒h=csin(A)

Then, the area RR of the triangle ABCABC is R=12bhR=12bh .Now, look at ΔADBΔADB . It is a right triangle with hypotenuse AB¯¯¯¯¯AB¯ that has a length of cc units.Consider the sine of ∠A∠A .sin(A)=Opposite SideHypotenuse                =hcsin(A)=hc⇒h=csin(A)sin(A)=Opposite SideHypotenuse                =hcsin(A)=hc⇒h=csin(A)Substituting the value of hh in the formula for the area of a triangle, you get

Then, the area RR of the triangle ABCABC is R=12bhR=12bh .Now, look at ΔADBΔADB . It is a right triangle with hypotenuse AB¯¯¯¯¯AB¯ that has a length of cc units.Consider the sine of ∠A∠A .sin(A)=Opposite SideHypotenuse                =hcsin(A)=hc⇒h=csin(A)sin(A)=Opposite SideHypotenuse                =hcsin(A)=hc⇒h=csin(A)Substituting the value of hh in the formula for the area of a triangle, you getR=12b(csin(A))     =12bcsin(A)R=12b(csin(A))     =12bcsin(A)

Then, the area RR of the triangle ABCABC is R=12bhR=12bh .Now, look at ΔADBΔADB . It is a right triangle with hypotenuse AB¯¯¯¯¯AB¯ that has a length of cc units.Consider the sine of ∠A∠A .sin(A)=Opposite SideHypotenuse                =hcsin(A)=hc⇒h=csin(A)sin(A)=Opposite SideHypotenuse                =hcsin(A)=hc⇒h=csin(A)Substituting the value of hh in the formula for the area of a triangle, you getR=12b(csin(A))     =12bcsin(A)R=12b(csin(A))     =12bcsin(A)Similarly, you can write formulas for the area in terms of sin(B)sin(B) or sin(C)sin(C) .

Then, the area RR of the triangle ABCABC is R=12bhR=12bh .Now, look at ΔADBΔADB . It is a right triangle with hypotenuse AB¯¯¯¯¯AB¯ that has a length of cc units.Consider the sine of ∠A∠A .sin(A)=Opposite SideHypotenuse                =hcsin(A)=hc⇒h=csin(A)sin(A)=Opposite SideHypotenuse                =hcsin(A)=hc⇒h=csin(A)Substituting the value of hh in the formula for the area of a triangle, you getR=12b(csin(A))     =12bcsin(A)R=12b(csin(A))     =12bcsin(A)Similarly, you can write formulas for the area in terms of sin(B)sin(B) or sin(C)sin(C) .R=12absin(C)R=12acsin(B)

Step-by-step explanation:

your answer

Similar questions