Math, asked by abhinavtiwari001, 9 months ago

Evaluate
sin 11x/12​

Answers

Answered by MaheswariS
0

\textbf{To find:}

\text{The value of $sin\frac{11\,\pi}{12}$}

\textbf{Solution:}

\text{We know that,}

\boxed{\bf\,cos2A=1-2\,sin^2A}

\implies\,sin^2A=\dfrac{1-cos\,2A}{2}

\text{Put $A=\dfrac{11\pi}{12}$, we get}

\implies\,sin^2\frac{11\pi}{12}=\dfrac{1-cos\,2(\frac{11\pi}{12})}{2}

\implies\,sin^2\frac{11\pi}{12}=\dfrac{1-cos\frac{11\pi}{6}}{2}

\implies\,sin^2\frac{11\pi}{12}=\dfrac{1-cos\,330^{\circ}}{2}

\implies\,sin^2\frac{11\pi}{12}=\dfrac{1-sin\,60^{\circ}}{2}

\implies\,sin^2\frac{11\pi}{12}=\dfrac{1-\frac{\sqrt3}{2}}{2}

\implies\,sin^2\frac{11\pi}{12}=\dfrac{\frac{2-\sqrt3}{2}}{2}

\implies\,sin^2\frac{11\pi}{12}=\dfrac{2-\sqrt3}{4}

\implies\,sin\dfrac{11\pi}{12}=\pm\dfrac{\sqrt{2-\sqrt3}}{2}

\text{But $\frac{11\pi}{12}$ lies in II quadrant. $sin\frac{11\pi}{12}$ is positive}

\therefore\boxed{\bf\,sin\frac{11\pi}{12}=\dfrac{\sqrt{2-\sqrt3}}{2}}

Find more:

Find the value of cos 22°30'

https://brainly.in/question/6037145

Evaluate :

(i) sin 3π/8

https://brainly.in/question/11216263

Similar questions