Evaluate: sin^2 10° + sin^2 20° + sin^2 40° + sin^2 50° + sin^2 70° + sin^2 80°
Please answer fast.
Anonymous:
I will mark the first to answer as brainliest, pls answer.
Answers
Answered by
8
Answer :
Now,
sin²10° + sin²20° + sin²40° + sin²50° + sin²70° + sin²80°
= sin²10° + sin²20° + sin²40° + sin²(90° - 40°) + sin²(90° - 20°) + sin²(90° - 10°)
= sin²10° + sin²20° + sin²40° + cos²40° + cos²20° + cos²10°, since sin(90° - θ) = cosθ
= (sin²10° + cos²10°) + (sin²20° + cos²20°) + (sin²40° + cos²40°)
= 1 + 1 + 1, since sin²θ + cos²θ = 1
= 3
#MarkAsBrainliest
Now,
sin²10° + sin²20° + sin²40° + sin²50° + sin²70° + sin²80°
= sin²10° + sin²20° + sin²40° + sin²(90° - 40°) + sin²(90° - 20°) + sin²(90° - 10°)
= sin²10° + sin²20° + sin²40° + cos²40° + cos²20° + cos²10°, since sin(90° - θ) = cosθ
= (sin²10° + cos²10°) + (sin²20° + cos²20°) + (sin²40° + cos²40°)
= 1 + 1 + 1, since sin²θ + cos²θ = 1
= 3
#MarkAsBrainliest
Answered by
1
[tex]sin^210 + sin^220+ sin^240 + sin^250 + sin^270 + sin^280 \\ \\ \\
sin^2( 90- 80)+ sin^2(90- 70) +sin^2(90 - 50) + sin^250 + sin^270+sin^280 \\ \\ \\
[/tex]
[tex]cos^2 80 + cos^270 + cos^250 + sin^250 + sin^270 + sin^280 \\ \\ \\ \\ cos^280+ sin^280 + cos^270 + sin^270 + cos^250 + sin^250 \\ \\ 1 + 1 + 1 \\ \\ 3 [/tex]
i hope this will help you
(-:
[tex]cos^2 80 + cos^270 + cos^250 + sin^250 + sin^270 + sin^280 \\ \\ \\ \\ cos^280+ sin^280 + cos^270 + sin^270 + cos^250 + sin^250 \\ \\ 1 + 1 + 1 \\ \\ 3 [/tex]
i hope this will help you
(-:
Who replies "me" first gets "Marked as Brainliest".
Similar questions