Math, asked by anjus5477, 1 year ago

Evaluate :
sin^2 60° + 2 tan45° - cos^2 30°

Answers

Answered by Ashishkumar098
34

Answer:

Step-by-step explanation:

sin²60° + 2 tan²45° - cos²30°

= ( √3 / 2 )² + 2 × 1 - ( √3 / 2 )

= 3 / 4 + 2 - 3 / 4

= 2 [ Required Answer ]

Answered by pinquancaro
56

\sin^2 60^\circ+2\tan 45^\circ-\cos^2 30^\circ=2

Step-by-step explanation:

Given : Expression \sin^2 60^\circ+2\tan 45^\circ-\cos^2 30^\circ

To find : Evaluate the expression ?

Solution :

\sin^2 60^\circ+2\tan 45^\circ-\cos^2 30^\circ

Using trigonometric values,

\sin 60^\circ=\frac{\sqrt3}{2}

\tan 45^\circ =1

\cos 30^\circ=\frac{\sqrt3}{2}

Substitute the values,

=(\frac{\sqrt3}{2})^2+2(1)-(\frac{\sqrt3}{2})^2

=\frac{3}{4}+2-\frac{3}{4}

=2

Therefore, \sin^2 60^\circ+2\tan 45^\circ-\cos^2 30^\circ=2.

#Learn more

EVALUATE : SIN THETA + COS THETA + SIN THETA COS (90°- THETA) COS THETA / SEC(90°-theta) + cos theta sin (90-theta)sin theta /cosec(90°-theta) - 2 sin(90°-theta) cos (90°-theta)

https://brainly.in/question/2500360

Similar questions