Math, asked by infernapeshashank, 25 days ago

Evaluate :
sin^2 63°+ sin^2 27°/COS^2 17° + cos- 73°​

Answers

Answered by Ladylaurel
7

Correct Question :-

Evaluate -:

\sf{\dfrac{{sin}^{2}{63}^{\circ} + {sin}^{2}{27}^{\circ}}{{cos}^{2}{17}^{\circ} + {cos}^{2}{73}^{\circ}}}

Answer :-

\sf{ \longrightarrow \:  \: \dfrac{{sin}^{2}{63}^{\circ} + {sin}^{2}{27}^{\circ}}{{cos}^{2}{17}^{\circ} + {cos}^{2}{73}^{\circ}}}

 \\

By putting the trigonometric ratio of complementary angle: [sin(90 - A) = cosA],

∴ sin63° = sin(90° - 27°) = cos27°

 \\

\sf{ \longrightarrow \:  \: \dfrac{{cos}^{2}{27}^{\circ} + {sin}^{2}{27}^{\circ}}{{cos}^{2}{17}^{\circ} + {cos}^{2}{73}^{\circ}}}

 \\

By putting the trigonometric ratio of complementary angle: [cos(90 - A) = sin A],

∴ cos73° = cos(90° - 17°) = sin17°

 \\

\sf{ \longrightarrow \:  \: \dfrac{{cos}^{2}{27}^{\circ} + {sin}^{2}{27}^{\circ}}{{cos}^{2}{17}^{\circ} + {sin}^{2}{17}^{\circ}}}

 \\

By using the identity [cos² A + sin² A = 1],

 \\

\sf{ \longrightarrow \:  \: \dfrac{1}{1}}

\sf{ \longrightarrow \:  \: 1}

 \\

Hence,

\sf{\dfrac{{sin}^{2}{63}^{\circ} + {sin}^{2}{27}^{\circ}}{{cos}^{2}{17}^{\circ} + {cos}^{2}{73}^{\circ}} = 1}

Similar questions