Math, asked by rishitaxoxo3320, 10 months ago

Evaluate sin^2 75 -sin^2 45

Answers

Answered by Anonymous
2

Answer:

 \boxed{ \sf\huge \implies:  \frac{ \sqrt{3} }{4} }

Step-by-step explanation:

 \sf\  {sin}^{2}75 \degree -  {sin}^{2}45 \degree \\  \\  \sf\ \implies: {(sin \: 75 \degree})^{2}  -  {sin}^{2}45 \degree \\  \\   \sf\ \implies: [{sin(30 \degree + 45 \degree)}^{2}]  -  {sin}^{2}45 \degree    \\  \\  \tt\underline{we \: know  \bf\red{{\:sin(A+B)=sin(A)cos(B)+cos(A)sin(B) }}}  \\  \\\sf\ \implies:{(sin30 \degree \: cos45 +  \degree \: cos30 \degree  \: sin45 \degree})^{2} -  {sin}^{2}45 \degree \\    \\  \sf\ \implies:( { \frac{1}{2 }  \times  \frac{1 }{ \sqrt{2} } +   \frac{ \sqrt{3} }{2}  \times \frac{1}{ \sqrt{2} }  })^{2} - {( \frac{1}{ \sqrt{2} }})^{2}    \\  \\\sf\ \implies: {(\frac{ 1 + \sqrt{3} }{2 \sqrt{2} }})^{2} -  \frac{1}{2}   \\  \\ \sf\ \implies: \frac{ {(1 +  \sqrt{3} })^{2} }{8}  -  \frac{1}{2} \\  \\ \sf\ \implies: \frac{ {(1 +  \sqrt{3} })^{2}  - 4}{8}    \\  \\\sf\ \implies: \frac{1 + 3 +2 \sqrt{3} - 4  }{8} \\  \\ \sf\ \implies: \frac{2 \sqrt{3} }{8}  \\  \\    \boxed{ \sf\huge \implies:  \frac{ \sqrt{3} }{4} }

Similar questions