Evaluate sin(2 tan inverse 1/4) +cos(tan inversr 2root2)
Answers
Answered by
3
Answer:
Step-by-step explanation:
let tan^-1 1/4= Q
tan Q=1/4...(1)
now sin(2tan^-1 1/4)= sin 2Q
= 2tanQ/1+tan^2Q
= 2*1/4/1+(1/4)^2
=1/2/1+1/16
=1/2/17/16
=1/2*16/17
now solving
cosQ(tanQ^-1 2root 2)
therefore tanQ= 2root2
and we need to find \
cosQ(tanQ^-1 2root 2)=cosQ
we know that
1+tan^2Q=sec^2Q
1+(2root2)^2=sec^2Q
1+8=sec^2Q
sec^2Q=9
1/cos^2Q=9
cosQ=+-1/3
since value of tan is positive
we take positive value of cosQ
therefore, cosQ=1/3
so, cosQ(tanQ^-1 2root 2)=1/3
now,
sin(2 tan inverse 1/4) +cos(tan inversr 2root2)
=8/17*1/3
41/51
Similar questions