Math, asked by ShubhGandhi2903, 1 year ago

Evaluate : sin 30° + cos 30° + tan 30° + cot 30° + sec 30° + cosec 30°

Answers

Answered by sweety1387
9

 \frac{1}{2} +  \frac{ \sqrt{3} }{2}  +  \frac{1}{ \sqrt{3} }  +  \sqrt{3}   +  \frac{2}{ \sqrt{3} }  + 2 \\  \frac{1 +  \sqrt{3} }{2} +  \frac{3}{ \sqrt{3} }  +  \sqrt{3}  + 2 \\  \frac{1 +  \sqrt{3} }{2}  +  \frac{ \sqrt{3}  \times  \sqrt{3} }{ \sqrt{3} }  +  \sqrt{3}  + 2 \\  \frac{1 +  \sqrt{3} }{2}  + 2 \sqrt{3}  + 2 \\  \frac{1 +  \sqrt{3} }{2} + 2( \sqrt{3}  + 1) \\  \frac{1 +  \sqrt{3}  + 4 \sqrt{3}  + 4}{2} \\ \frac{5 + 5 \sqrt{3} }{2}

hope this will help u

Answered by pinquancaro
4

\sin 30^\circ + \cos 30^\circ + \tan 30^\circ+ \cot 30^\circ+ \sec 30^\circ+ \csc 30^\circ=\frac{15+14\sqrt3}{6}

Step-by-step explanation:

Given : Expression \sin 30^\circ + \cos 30^\circ + \tan 30^\circ+ \cot 30^\circ+ \sec 30^\circ+ \csc 30^\circ

To find : Evaluate the expression ?

Solution :

Expression \sin 30^\circ + \cos 30^\circ + \tan 30^\circ+ \cot 30^\circ+ \sec 30^\circ+ \csc 30^\circ

Using trigonometric values,

\sin 30^\circ=\frac{1}{2}

\cos 30^\circ=\frac{\sqrt3}{2}

\tan 30^\circ=\frac{\sqrt 3}{3}

\csc 30^\circ=2

\sec 30^\circ=\frac{2\sqrt 3}{3}

\cot 30^\circ=\sqrt 3

Substitute the values,

=\frac{1}{2} +\frac{\sqrt3}{2} +\frac{\sqrt 3}{3}+ \sqrt 3+\frac{2\sqrt 3}{3}+2

=\frac{3+3\sqrt3+\sqrt 3+6\sqrt 3+4\sqrt 3+12}{2\times 3}

=\frac{15+14\sqrt3}{6}

Therefore, \sin 30^\circ + \cos 30^\circ + \tan 30^\circ+ \cot 30^\circ+ \sec 30^\circ+ \csc 30^\circ=\frac{15+14\sqrt3}{6}

#Learn more

Evaluate cos 30° + sin 60° /1+ cos 30° + sin 30°​

https://brainly.in/question/8544637

Similar questions