Math, asked by summer2015514, 9 months ago

Evaluate :
sin 35° cos 55° + cos 35º sin 55°/cosec²10º – tan²80°​

Answers

Answered by sanjay015
5

Answer:

sin35°cos(90-35°)+cos35°sin(90-35°)/cosec^2 10°-tan^2(90-10°)

Step-by-step explanation:

=sin35°sin35°+cos35°cos35°/cosec^2 10°-cot^2 10°=sin^2 35°+cos^2 35°/1=1/1=1. ans

Answered by roshinik1219
3

sin 35° cos 55° + cos 35º sin 55° / cosec²10º – tan²80° = 1

Step-by-step explanation:

The value of sin 35° cos 55° + cos 35º sin 55° / cosec²10º – tan²80°has to be determined.

Here it is not necessary to know the values of the  sin 35° or cos55° etc.

sin 35° cos 55° + cos 35º sin 55°/cosec²10º – tan²80°

we know,

cos(90-35°) = sin35°

sin(90-35°) = cos35°

tan(90-10°)   = cot 10°

cosec^2 ∅ - cot^2 ∅° = 1

so,

⇒ sin 35° cos 55° + cos 35º sin 55° / cosec²10º – tan²80°

⇒ sin35°cos(90-35°) + cos35°sin(90-35°)  / cosec^2 10° - tan^2(90-10°)    

⇒sin35°sin35° +cos35°cos35° / cosec^2 10°-cot^2 10°

⇒sin^2 35°+cos^2 35° / cosec^2 10° - cot^2 10°

⇒1/1

⇒1

Similar questions