Evaluate sin^6 A - cos^6 A
Answers
Answered by
5
Hey mate,
sin^6A-cos^6A\\=(sin^2A)^3-(cos^2A)^3\\
From basic algebraic rules:
a^3-b^3=(a-b)(a^2+b^2+ab)
Hence,
(sin^2A)^3-(cos^2A)^3=(sin^2A-cos^2A)(sin^4A+cos^4A+sin^2Acos^2A)\\=-cos2A[(sin^2A)^2+(cos^2A)^2+sin^2Acos^2A]\\=-cos2A[(sin^2A+cos^2A)^2-2sin^2Acos^2A+sin^2Acos^2A]\\=-cos2A(1-sin^2Acos^2A)\\=-cos2x(1-\frac{sin^22A}{4} )
Hope it will help you.
✨It's. M.S.V.
Answered by
4
HIII.....
GOOD MORNING:-)
FIND YOUR ANSWER IN THE ATTACHMENT I GAVE
Attachments:
Similar questions