Math, asked by topsta, 1 year ago

evaluate: sin^6 alpha+cos^6alpha=1-3sin^2alpha+3sin^4alpha​

Answers

Answered by Anonymous
2

Answer:

to find the value of alpha???????

Answered by harendrachoubay
11

\sin^6 \alpha+\cos^6\alpha=1-3\sin^2\alpha+3\sin^4\alpha, proved.

Step-by-step explanation:

To prove that, \sin^6 \alpha+\cos^6\alpha=1-3\sin^2\alpha+3\sin^4\alpha.

L.H.S. =\sin^6 \alpha+\cos^6\alpha

=(\sin^2 \alpha)^3+(\cos^2\alpha)^3

Using the algebraic identity,

(a+b)^{3} =a^{3} +b^{3}+3ab(a+b)

a^{3} +b^{3}=(a+b)^{3}-3ab(a+b)

=(\sin^2 \alpha+\cos^2\alpha)^3-3\sin^2 \alpha\cos^2\alpha(\sin^2 \alpha+\cos^2\alpha)

=(1)^3-3\sin^2 \alpha\cos^2\alpha(1)

Using the trigonometric identity,

\sin^2 A+\cos^2A=1

=1-3\sin^2 \alpha\cos^2\alpha

=1-3\sin^2 \alpha(1-\sin^2 \alpha)

=1-3\sin^2 \alpha+3\sin^4 \alpha

= R.H.S., proved.

Thus, \sin^6 \alpha+\cos^6\alpha=1-3\sin^2\alpha+3\sin^4\alpha, proved.

Similar questions