Math, asked by kavlekar15, 2 months ago

Evaluate : sin 60° + cos 30° + sin 30°cos30°

Answers

Answered by Ladylaurel
5

Answer :-

sin60° + cos30° + sin30° cos30° = 5√3/4.

Step-by-step explanation:

To Find :-

  • Evaluate: sin60° + cos30° + sin30° cos30°

Solution

 \sf{\longrightarrow \: {sin60}^{\circ} + {cos30}^{\circ} + {sin30}^{\circ} {cos30}^{\circ}}

First solving, [sin30° cos30°],

By using the trigonometric ratio, [sin30° = 1/2] and [cos30° = 3/2],

 \\

 \sf{\longrightarrow \: {sin60}^{\circ} + {cos30}^{\circ} + \dfrac{1}{2} \times \dfrac{ \sqrt{3}}{2}}

 \sf{\longrightarrow \: {sin60}^{\circ} + {cos30}^{\circ} +  \dfrac{1 \times \sqrt{3}}{2 \times 2}}

 \sf{\longrightarrow \: {sin60}^{\circ} + {cos30}^{\circ} +  \dfrac{ \sqrt{3}}{4}}

 \\

Now, solving [sin60° + cos30°],

By using the trigonometric ratio, [sin60° = 3/2] and [cos30° = 1/2],

 \\

 \sf{\longrightarrow \: \dfrac{ \sqrt{3}}{2} + \dfrac{ \sqrt{3}}{2} +  \dfrac{ \sqrt{3}}{4}}

 \sf{\longrightarrow \:  \dfrac{ \sqrt{3} + \sqrt{3}}{2} +  \dfrac{ \sqrt{3}}{4}}

 \sf{\longrightarrow \:  \dfrac{2 \sqrt{3}}{2} +  \dfrac{ \sqrt{3}}{4}}

 \sf{\longrightarrow \:  \dfrac{ \not{2} \sqrt{3}}{ \not{2}} +  \dfrac{ \sqrt{3}}{4}}

 \sf{\longrightarrow \: \sqrt{3} +  \dfrac{ \sqrt{3}}{4}}

By simplifying, [3 + 3/4],

 \\

 \sf{\longrightarrow \: \sqrt{3} +  \dfrac{ \sqrt{3}}{4}}

 \sf{\longrightarrow \: \dfrac{ \sqrt{3}}{1} +  \dfrac{ \sqrt{3}}{4}}

 \sf{\longrightarrow \:  \dfrac{4\sqrt{3} +  \sqrt{3}}{4}}

 \sf{\longrightarrow \: \dfrac{5 \sqrt{3}}{4}}

 \bf{\longrightarrow \: \dfrac{5 \sqrt{3}}{4}}

Thus, sin60° + cos30° + sin30° cos30° = 53/4.


rsagnik437: Amazing ! :)
Ladylaurel: Thank you so much!
Similar questions