Evaluate: sin^6A - cos^6A
Answers
Answer:
cos²A (sin²A-2) (or) - [cos2A] [ 1 + (1/2) sin2A ]
(pls check your question, because we have soln for
cos⁶A-sin⁶A = )
Step-by-step explanation:
sin⁶A-cos⁶A
= (sin²A)³- (cos²A)³ [∵ a⁶=(a²)³]
= (sin²A-cos²A) - ( (sin²A)²+ (cos²A)²+sin²Acos²A )
[∵ a³- b³= (a-b)(a²+b²+ab)]
= (sin²A-(1-sin²A) - ( (sin²A+cos²A)²- 2sin²Acos²A +sin²Acos²A )
[∵ a²+ b² = (a+b)²-2ab]
= (sin²A-1+sin²A) - ( (1)²- sin²Acos²A) )
= (2sin²A-1) - ( 1 - sin²A(1-sin²A) )
= (2sin²A -1) - ( 1 - sin²A + sin⁴A)
= 2sin²A - 1 - 1 + sin²A - sin⁴A
= 3sin²A - sin⁴A- 2
= sin²A(3-sin²A) - 2
= sin²A(2+ 1-sin²A) - 2
= sin²A(2+cos²A)-2
= 2sin²A + sin²Acos²A - 2
= 2sin²A - 2 + sin²Acos²A
= 2(sin²A -1)+ sin²Acos²A
= -2cos²A+ sin²Acos²A
= cos²A (sin²A-2)
(or)
sin⁶A-cos⁶A
= (sin²A)³- (cos²A)³
= (sin²A-cos²A)³ + 3sin²Acos²A [sin²A- cos²A]
= [sin²A- cos²A] [ (sin²A-cos²A)² + 3sin²Acos²A ]
= [sin²A- cos²A] [ (sin²A+cos²A-2sin²Acos²A) + 3sin²Acos²A ]
= [sin²A- cos²A] [ 1-2sin²Acos²A + 3sin²Acos²A ]
= [sin²A- cos²A] [ 1 + sin²Acos²A ]
= - [cos2A] [ 1 + (1/2) sin2A ]