Math, asked by rohandeychowdhury1, 3 months ago

Evaluate: sin^6A - cos^6A

Answers

Answered by ravi2303kumar
1

Answer:

cos²A (sin²A-2)  (or) - [cos2A] [ 1 + (1/2) sin2A ]

(pls check your question, because we have soln for

  cos⁶A-sin⁶A = cos 2a [ 1 - (1/4)sin^2 2a].)

Step-by-step explanation:

sin⁶A-cos⁶A

= (sin²A)³- (cos²A)³                                                         [∵  a⁶=(a²)³]

= (sin²A-cos²A) - ( (sin²A)²+ (cos²A)²+sin²Acos²A )    

                                                                                    [∵ a³- b³= (a-b)(a²+b²+ab)]

= (sin²A-(1-sin²A) - ( (sin²A+cos²A)²- 2sin²Acos²A +sin²Acos²A )

                                                                                      [∵ a²+ b² = (a+b)²-2ab]

= (sin²A-1+sin²A) - ( (1)²- sin²Acos²A)  )

= (2sin²A-1) - ( 1 - sin²A(1-sin²A)  )

= (2sin²A -1) - ( 1 - sin²A + sin⁴A)  

= 2sin²A - 1 - 1 + sin²A - sin⁴A

= 3sin²A - sin⁴A- 2

= sin²A(3-sin²A) - 2

= sin²A(2+ 1-sin²A) - 2

= sin²A(2+cos²A)-2

= 2sin²A + sin²Acos²A - 2

= 2sin²A  - 2 + sin²Acos²A

= 2(sin²A -1)+ sin²Acos²A

= -2cos²A+ sin²Acos²A

= cos²A (sin²A-2)

(or)

sin⁶A-cos⁶A

= (sin²A)³- (cos²A)³    

= (sin²A-cos²A)³ + 3sin²Acos²A [sin²A- cos²A]

= [sin²A- cos²A] [ (sin²A-cos²A)² + 3sin²Acos²A ]

= [sin²A- cos²A] [ (sin²A+cos²A-2sin²Acos²A) + 3sin²Acos²A ]

= [sin²A- cos²A] [ 1-2sin²Acos²A + 3sin²Acos²A ]

= [sin²A- cos²A] [ 1 + sin²Acos²A ]

= - [cos2A] [ 1 + (1/2) sin2A ]

Similar questions