Evaluate : Sin^6x - Cos^6x
Answers
Answered by
3
sin6x−cos6xsin6x−cos6x
=(sin2x)3−(cos2x)3=(sin2x)3−(cos2x)3
=(sin2x−cos2x)(sin4x+sin2xcos2x+cos4x)=(sin2x−cos2x)(sin4x+sin2xcos2x+cos4x)
=−cos2x[(sin2x)2+(cos2x)2+sin2xcos2x]=−cos2x[(sin2x)2+(cos2x)2+sin2xcos2x]
=−cos2x[(sin2x+cos2x)2−2sin2xcos2x+sin2xcos2x]=−cos2x[(sin2x+cos2x)2−2sin2xcos2x+sin2xcos2x]
=−cos2x(1−sin2xcos2x)=−cos2x(1−sin2xcos2x)
=−cos2x(1−sin22x4)=−cos2x(1−sin22x4)
=sin2xsin4x8−cos2x
I hope you liked it
pls follow me
=(sin2x)3−(cos2x)3=(sin2x)3−(cos2x)3
=(sin2x−cos2x)(sin4x+sin2xcos2x+cos4x)=(sin2x−cos2x)(sin4x+sin2xcos2x+cos4x)
=−cos2x[(sin2x)2+(cos2x)2+sin2xcos2x]=−cos2x[(sin2x)2+(cos2x)2+sin2xcos2x]
=−cos2x[(sin2x+cos2x)2−2sin2xcos2x+sin2xcos2x]=−cos2x[(sin2x+cos2x)2−2sin2xcos2x+sin2xcos2x]
=−cos2x(1−sin2xcos2x)=−cos2x(1−sin2xcos2x)
=−cos2x(1−sin22x4)=−cos2x(1−sin22x4)
=sin2xsin4x8−cos2x
I hope you liked it
pls follow me
Answered by
3
Sin⁶x - Cos⁶x = (Sin²x - Cos²x)(1 - Sin²xCos²x) = (Sinx + Cosx)(Sinx - Cosx)(1 + SinxCosx)(1 - SinxCosx)
Step-by-step explanation:
Sin⁶x - Cos⁶x
= (Sin³x)² - (Cos³x)²
using a² - b² = (a + b)(a - b)
= (Sin³x + Cos³x)(Sin³x - Cos³x)
a³ + b³ = (a + b)(a² - ab + b²)
a³ - b³ = (a - b)(a² + ab + b²)
= (Sinx + Cosx)(Sin²x - SinxCosx + Cos²x) (Sinx - Cosx)(Sin²x + SinxCosx + Cos²x)
using Sin²x + Cos²x = 1
= (Sinx + Cosx)(1 - SinxCosx) (Sinx - Cosx)(1 + SinxCosx)
= (Sin²x - Cos²x)(1 - Sin²xCos²x)
Sin⁶x - Cos⁶x = (Sin²x - Cos²x)(1 - Sin²xCos²x)
Learn more:
1/secx-tanx -1/cos = 1/cosx - 1/secx+tanx
https://brainly.in/question/8160834
If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in
https://brainly.in/question/7871635
Similar questions