Math, asked by vaithy2178, 1 year ago

Evaluate : sin 7pi/12 . cos pi/4 - cos 7pi/12 . sin pi/4

Answers

Answered by frank55oops
42
Sin(A-B) = SinA*CosB - CosA*SinB
Sin( \frac{7 \pi }{12}  \frac{ \pi }{4} ) = Sin( \frac{7 \pi }{12}  )*Cos( \frac{\pi }{4}  ) -  Cos( \frac{7 \pi }{12}  )*Sin( \frac{\pi }{4}  )
Sin( \frac{4 \pi }{12} ) = Sin( \frac{ \pi }{3}  \frac{ \sqrt{3} }{2}
Answered by pinquancaro
56

Answer:

\sin\frac{7\pi}{12}\cdot\cos\frac{\pi}{4}-\cos\frac{7\pi}{12}\cdot\sin\frac{\pi}{4}=\frac{\sqrt{3}}{2}

Step-by-step explanation:

To evaluate : \sin\frac{7\pi}{12}\cdot\cos\frac{\pi}{4}-\cos\frac{7\pi}{12}\cdot\sin\frac{\pi}{4}

Solution :

We know that,

\sin(A-B)=\sin A\cdot \cos B-\cos A\cdot\cos B

On comparing with the given expression,

A=\frac{7\pi}{12} and B=\frac{\pi}{4}

\sin\frac{7\pi}{12}\cdot\cos\frac{\pi}{4}-\cos\frac{7\pi}{12}\cdot\sin\frac{\pi}{4}=\sin(\frac{7\pi}{12}-\frac{\pi}{4})

\sin\frac{7\pi}{12}\cdot\cos\frac{\pi}{4}-\cos\frac{7\pi}{12}\cdot\sin\frac{\pi}{4}=\sin(\frac{7\pi-3\pi}{12})

\sin\frac{7\pi}{12}\cdot\cos\frac{\pi}{4}-\cos\frac{7\pi}{12}\cdot\sin\frac{\pi}{4}=\sin(\frac{4\pi}{12})

\sin\frac{7\pi}{12}\cdot\cos\frac{\pi}{4}-\cos\frac{7\pi}{12}\cdot\sin\frac{\pi}{4}=\sin(\frac{\pi}{3})

We know, \sin(\frac{\pi}{3})=\frac{\sqrt{3}}{2}

\sin\frac{7\pi}{12}\cdot\cos\frac{\pi}{4}-\cos\frac{7\pi}{12}\cdot\sin\frac{\pi}{4}=\frac{\sqrt{3}}{2}

Similar questions