Evaluate sin square 1 Degree + sin square 23 degree + sin square 45 degree + so on till + sin square 89 degree
Answers
Answered by
26
Given→
sin²1° + sin²23° + sin² 45 ° + sin² 67° + sin² 89°
Because there is a difference of 22° among all terms .
Solution→
Sin²1 ° can be written in the form of cos theta as
sin theta = cos (90- theta )
sin ²1. = cos² ( 90-1 )
Sin²1°. = cos²89°
Similarly →
sin²23°. = cos²( 90- 23)
sin²23°. = cos²67°
Now putting theses values in given series.
(cos²89° + sin²89°) +(cos²67° +sin²67°) +sin²45°
we know that sin²a + cos²a = 1 and value of sin 45° = 1/√2
→ 1 + 1 +( 1/√2 )²
→ 2 + 1/2
→ 5 /2
Similar questions