Math, asked by godf74994, 2 months ago

evaluate sin square 30° *sin square 45° + 4tan square 30°​

Answers

Answered by haripriyayarlagadda4
0

Step-by-step explanation:

Valueof

sin

2

30°cos

2

45°+4tan

2

30°

+

2

1

sin

2

90°−2cos

2

90°

+

24cos

2

1

=0

Step-by-step explanation:

\begin{gathered}Value \: of \\sin^{2}30\degree cos^{2} 45\degree +4 tan^{2} 30\degree \\+\frac{1}{2} sin^{2} 90\degree -2 cos^{2} 90\degree\\ +\frac{1}{24 cos^{2} 0\degree} \end{gathered}

Valueof

sin

2

30°cos

2

45°+4tan

2

30°

+

2

1

sin

2

90°−2cos

2

90°

+

24cos

2

1

\begin{gathered}=\big(\frac{1}{2}\big)^{2} \times \big(\frac{1}{\sqrt{2}}\big)^{2}+4 \big(\frac{1}{\sqrt{3}}\big)^{2}\\+\frac{1}{2}\times 1-2 \times 0\\+\frac{1}{24\times 1^{2}}\end{gathered}

=(

2

1

)

2

×(

2

1

)

2

+4(

3

1

)

2

+

2

1

×1−2×0

+

24×1

2

1

=\frac{1}{4}\times \frac{1}{2}+4\times \frac{1}{3}+\frac{1}{2}-0+\frac{1}{24}=

4

1

×

2

1

+4×

3

1

+

2

1

−0+

24

1

= \frac{1}{8}+\frac{4}{3}+\frac{1}{2}+\frac{1}{24}=

8

1

+

3

4

+

2

1

+

24

1

=\frac{3+32+12+1}{24}=

24

3+32+12+1

=\frac{48}{24}=

24

48

=2=2

Therefore,

\begin{gathered}Value \: of \\sin^{2}30\degree cos^{2} 45\degree +4 tan^{2} 30\degree \\+\frac{1}{2} sin^{2} 90\degree -2 cos^{2} 90\degree\\ +\frac{1}{24 cos^{2} 0\degree}=2 \end{gathered}

Valueof

sin

2

30°cos

2

45°+4tan

230°+ 21 sin 290°−2cos 2 90°+ 24cos 20⁰1 =2

Similar questions